[1] 许保玖. 当代给水与废水处理原理[M]. 北京: 高等教育出版社,1991: 358-377.
Xu B J. Principle of contemporary water supply and wastewater treatment[M]. Beijing: Higher Education Press, 1991: 358-377.
[2] 夏岚, 李遵龙, 郑朋. 荧光原位杂交法研究氧化沟内微生物群落分布特征[J]. 化工进展, 2012, 31(z2): 203-207.
Xia L, Li Z L, Zheng P. Characteristics of distribution of microbial community in oxidation ditch using fluorescence in situ hybridization[J].Chemical Industry and Engineering Progress, 2012, 31(z2): 203-207.
[3] 金昌权, 汪诚文, 曾思育等. 污水处理厂能耗特征分析方法与节能途径研究[J]. 给水排水, 2009, 35(z1): 272-232.
Jin C Q, Wang C W, Zeng S Y, et al. Study on Energy consumption characteristic analysis method and energy-saving approach in sewage treatment plant[J]. Water & Water Wastewater Engineering, 2009, 35(z1): 272-23.
[4] Vermande S, Chaumaz M, Marsal S, et al. Modélisation numérique d’un bassin à grande profondeur[J]. Récent progrès en Génie des Procédés, 2005, 92: 8.
[5] Stamou A I. Improving the hydraulic efficiency of water process tanks using CFD models[J]. Chem. Eng. Process, 2008, 47(8): 1179-1189.
[6] Yang Y, Yang J, Zuo J, et al. Study on two operating conditions of a full-scall oxidation ditch for optimization of energy consumption and effluent quality by using CFD[J]. Water Res., 2011, 45(11): 3439-3452.
[7] Sekizawa T, Fujie K, Kubota H, et al. Air diffuser performance in activated sludge aeration tanks[J]. Water Pollut. Control Fed., 1985, 57(1): 53-59.
[8] Yang Y, Wu Y, Yang X, et al. Flow field prediction in full-scale carrousel oxidation ditch by using computational fluid dynamics[J]. Water science and technology, 2010, 62(2): 256-265.
[9] 吴莹莹. 氧化沟流场和溶解氧CFD模拟研究[D]. 武汉: 华中科技大学, 2009.
Wu Y Y. CFD Simulation of flow field and dissolved oxygen in oxidation ditch[D]. Wuhan: Huazhong University Of Science And Technology,2009.
[10] Fayolle Y, Cockx A, Gillot S, et al. Oxygen transfer prediction in aeration tanks using CFD[J]. Chem. Eng. Sci., 2007, 62(24): 7163-7171.
[11] Cockx A, Audic J M, Line A, et al. Global and local mass transfer coefficients in waste water treatment process by computational fluid dynamics[J]. Chem. Eng. Process., 2001, 40(2): 187-194.
[12] Mitsuharu T, Magnus S, Rajeev G, et al. Determination of diffuser bubble size in computational fluid dynamics models to predict oxygen transfer in spiral roll aeration tanks[J]. Journal of Water Process Engineering, 2016, 12: 120-126.
[13] Sanchez F, Rey H, Viedma A, et al. CFD simulation of fluid dynamic and biokinetic processes within activated sludge reactors under intermittent aeration regime[J]. Water Research, 2018, 139: 47-57.
[14] 谢浩. 氧化沟液-固两相CFD模拟及ASM模型耦合研究[D]. 武汉: 华中科技大学, 2013.
Xie H. Study on hydrodynamics simulation by liquid-solid two-phase CFD model and activated sludge model ASM1 in a Full-Scale Oxidation Ditch[D]. Wuhan: Huazhong University Of Science And Technology, 2013.
[15] Ishii M. Two-fluid model for two-phase flow[J]. Multiphase Science and Technology, 1990, 5(1-4): 1-64.
[16] Gillot S, Heduit A. Effect of air flow rate on oxygen transfer in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers[J]. Water Res., 2000, 34(5): 1756-1762.
[17] 李光, 杨晓钢, 戴干策. 鼓泡塔反应器气液两相流CFD数值模拟[J]. 化工学报, 2008, 59(8): 1958-1965.
Li G, Yang X G, Dai G C. CFD simulation of gas-liquid flow in bubble column[J]. CIESC Journal, 2008, 59(8): 1958-1965.
[18] Higbie R. The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. Trans. Am. Inst. Chem. Eng., 1935, 31: 365-389.
[19] ASCE. Asce Standard measurement of oxygen transfer in clean water[M]. Virginia: American Society of Civil Engineers, 2007.
[20] Schiler L, Naumann Z. A drag coefficient correlation[J]. VDI Zeitung, 1935, 77: 318-320. |