欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2018, Vol. 18 ›› Issue (3): 590-594.DOI: 10.12034/j.issn.1009-606X.217345

• 过程与工艺 • 上一篇    下一篇

基于VAE-DBN的故障分类方法在化工过程中的应用

张 祥, 崔 哲, 董玉玺, 田文德*   

  1. 青岛科技大学化工学院,山东 青岛 266042
  • 收稿日期:2017-09-29 修回日期:2017-11-24 出版日期:2018-06-22 发布日期:2018-06-06
  • 通讯作者: 田文德 tianwd@qust.edu.cn
  • 基金资助:
    基于非线性动态模型的精馏过程安全智能预测方法与预警策略研究

Application of Fault Classification Method Based on VAE-DBN in Chemical Process

Xiang ZHANG, Zhe CUI, Yuxi DONG, Wende TIAN*   

  1. College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
  • Received:2017-09-29 Revised:2017-11-24 Online:2018-06-22 Published:2018-06-06
  • Contact: TIAN Wen-de tianwd@qust.edu.cn

摘要: 针对化工过程高维数据的故障特征难以提取的难题,提出变分自动编码器(VAE)结合深度置信网络(DBN)的混合故障诊断方法. 在VAE的编码部分对隐变量空间Z添加约束,通过重参数化方法进行反向传播训练,可无监督地学习不同故障对应的隐变量特征,其作为DBN分类模型的输入特征训练网络,输入测试集进行故障诊断. 田纳西伊斯曼流程(TE)应用结果表明,VAE能提取原始数据更加抽象有效的特征,VAE?DBN分类准确.

关键词: 变分自动编码器, 深度置信网络, 故障诊断, 特征提取

Abstract: To extract the fault feature from a large quantity of high-dimensional data, a variational auto-encoder (VAE) and deep belief network (DBN) combined fault diagnosis method was proposed for chemical process. In the encoding process of VAE, constraints were added to the latent variable space Z, and the backward propagation training was carried out by the re-parameterization method. The latent variables corresponding to different faults could be learned without supervision. Subsequently, the latent variable features learned by VAE were used as input features of the DBN classification model to diagnose the faults. The results showed that VAE could extract more abstract and effective features from the original data, and VAE?DBN had excellent performance in classification accuracy.

Key words: VAE, Deep Belief Network, Fault diagnosis, Feature extraction