欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2018, Vol. 18 ›› Issue (4): 669-679.DOI: 10.12034/j.issn.1009-606X.217416

• 综述 • 上一篇    下一篇

微通道内火焰传播的研究进展

王 正1,2, 赵祥迪1, 陈国鑫1, 杨 帅1, 黄青山2, 蒋夫花2*   

  1. 1. 中国石化青岛安全工程研究院
    2. 中国科学院青岛生物能源与过程研究所
  • 收稿日期:2017-12-12 修回日期:2018-01-19 出版日期:2018-08-22 发布日期:2018-08-15
  • 通讯作者: 蒋夫花 jiangfh@qibebt.ac.cn
  • 基金资助:
    波纹板阻火器微通道火焰淬熄精准数学模型的研究;气泡群介尺度曳力的实验研究及基于介尺度理论的气-液两流体模型研究;光生物反应器内流动、辐射和光生化反应协同机理的研究;高性能阻爆轰波纹板阻火器的开发及应用;高效反应结晶器的组装及自动测控系统的研制

Advance in the research of flame propagation in the microchannels

Zheng WANG1, 2, Xiangdi ZHAO1, Guoxin CHEN1, Shuai YANG1, Qingshan HUANG2, Fuhua JIANG2*   

  1. 1. State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong
    266071, China
    2. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
  • Received:2017-12-12 Revised:2018-01-19 Online:2018-08-22 Published:2018-08-15

摘要: 微燃烧器与阻火器淬火单元均为可燃气体燃烧的微通道,目前对微燃烧器的研究较充分,而对阻火器淬火单元的研究较少. 本工作概述了影响火焰在微通道内传播的因素,指出对各因素的研究还需深入,有利于澄清争议;简述了火焰在微通道内传播的数学模型的研究进展,提出微通道内流体流动流型的判定亟需完善;确定在高速爆轰条件下,阻火器内的流动为湍流;推荐将雷诺应力湍流模型与层流有限速率模型结合进行阻火器内高速爆轰火焰传播的数值模拟,推荐采用以密度为基础的算法进行求解;指出了微通道内火焰传播研究的成果与不足,展望了其发展方向.

关键词: 微通道, 数学模型, 火焰淬熄, 层流有限速率, 湍流燃烧

Abstract: Both the microcombustor and the quenching units of the flame arrestors are microchannels containing combustible gas burning. Although the researches on the microcombustor are abundant, the study of the quenching units in the flame arrestors is relatively scarce. In this work the principal factors affecting the flame propagation in the microchannels are summarized. It is shown that a more systematic study is desired to settle the disputes. The advance of the mathematical model for the flame propagation in the microchannels is reviewed. It is proposed that the fluid flow pattern in the microchannel is worth discussing. It is determined that the flow in the flame arrestor is turbulent under high-speed detonation conditions. The combination of the Reynolds stress model with the laminar finite rate model is recommended here to be employed for the numerical simulation of detonation flame propagation in the flame arrestors. A density-based algorithm is recommended. In the concluding remark, research achievements and shortcomings in the investigation of flame propagation in the microchannels are pointed out, and the outlook is also addressed.

Key words: microchannel, mathematical model, flame quenching, laminar finite rate, turbulent combustion