[1]李法强. 世界锂资源提取技术述评与碳酸锂产业现状及发展趋势[J].世界有色金属, 2015, 5: 17-23.
[2]Ling C, Zhang R, Takechi K, et al. Intrinsic barrier to electrochemically decompose Li2CO3 and LiOH[J]. J. Phys. Chem. C. 2014, 118(46): 26591-26598.
[3]Rahman M A, Wang X, Wen C. A review of high energy density lithium–air battery technology[J]. J. Appl. Electrochem. 2014, 44(1): 5-22.
[4]何启贤. 世界锂金属资源开发利用现状及其市场前景分析[J]. 轻金属, 2011, 9: 3-7.
[5]胡兴军. 锂:市场前景极为广阔[J]. 中国金属通报, 2011, 9: 26-28.
[6]谢贞付, 王毓华, 于福顺, 等. 伟晶岩型锂辉石矿浮选研究综述[J]. 稀有金属, 2013, 4: 641-649.
[7]Gruber P W, Medina P A, Keoleian G A, et al. Global lithium availability[J]. J. Ind. Ecol. 2011, 15(5): 760-775.
[8]Liu L, Zhang H, Zhang Y, et al. Lithium extraction from seawater by manganese oxide ion sieve MnO2?0.5H2O[J]. Colloids Surf., A : Physicochemical and Engineering Aspects, 2015, 468: 280-284.
[9]Wang L, Ma W, Liu R, et al. Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor[J]. Solid State Ionics, 2006, 177(17): 1421-1428.
[10]Chitrakar R, Kanoh H, Miyai Y, et al. Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4[J]. Ind. Eng. Chem. Res. 2001, 40(9): 2054-2058.
[11]Ryu T, Ryu J C, Shin J, et al. Recovery of lithium by an electrostatic field-assisted desorption process[J]. Ind. Eng. Chem. Res. 2013, 52(38): 13738-13742.
[12]Xiao J L, Sun S Y, Wang J, et al. Synthesis and adsorption properties of Li1.6Mn1.6O4 spinel[J]. Ind. Eng. Chem. Res. 2013, 52(34): 11967-11973.
[13]Zhang Q H, Li S P, Sun S Y, et al. Lithium selective adsorption on 1-D MnO2 nanostructure ion-sieve[J]. Adv. Powder Technol. 2009, 20(5): 432-437.
[14]Xiao G, Tong K, Zhou L, et al. Adsorption and desorption behavior of lithium ion in spherical PVC–MnO2 ion sieve[J]. Ind. Eng. Chem. Res. 2012, 51(33): 10921-10929.
[15]Umeno A, Miyai Y, Takagi N, et al. Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater[J]. Ind. Eng. Chem. Res. 2002, 41(17): 4281-4287.
[16]Park M J, Nisola G M, Beltran A B, et al. Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate[J]. Chem. Eng. J. 2014, 254: 73-81.
[17]Xiao J L, Sun S Y, Song X, et al. Lithium ion recovery from brine using granulated polyacrylamide–MnO2 ion-sieve[J]. Chem. Eng. J. 2015, 279: 659-666.
[18]Zhu G, Wang P, Qi P, et al. Adsorption and desorption properties of Li+ on PVC-H1.6Mn1.6O4 lithium ion-sieve membrane[J]. Chem. Eng. J. 2014, 235: 340-348.
[19]Hong H J, Park I S, Ryu T, et al. Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater[J]. Chem. Eng. J. 2013, 234: 16-22.
[20]Xiao J, Nie X, Sun S, et al. Lithium ion adsorption–desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model[J]. Adv. Powder Technol. 2015, 26(2): 589-594.
[21]Li P, Zheng S L, Qing P H, et al. The vanadate adsorption on a mesoporous boehmite and its cleaner production application of chromate[J]. Green Chem, 2014, 16(9):4214-4222.
[22]Granadoscorrea F, Jiménezbecerril J. Chromium (VI) adsorption on boehmite[J]. J. Hazard. Mater, 2009, 162(2–3):1178-1184.
[23]Wang S L, Li P, Cui W W, et al. Hydrothermal synthesis of lithium-enriched β-Li2TiO3 with an ion-sieve application: excellent lithium adsorption[J]. Rsc Advances, 2016, 6(104):102608-102616.
[24]Naiya T K, Bhattacharya A K, Das S K. Removal of Cd(II) from aqueous solutions using clarified sludge[J]. J. Colloid Interface Sci, 2008, 325(1):48-56.
[25]Ho Y S, Mckay G. A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J]. Process Saf. Environ. Prot, 1998, 76(4):332-340.
[26]Shu J X, Wang Z H, Huang Y J, et al. Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: Kinetics, isotherms, thermodynamics and mechanism analysis[J]. J. Alloys Compd, 2015, 633(5):338-346.
[27]Zhou L M, Wang Y P, Liu Z R, et al. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres[J]. J. Hazard. Mater, 2009, 161(2–3):995-1002.
|