[1] Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol, 1988, 54(6): 1472-80
[2] Wang G, Huang L, Zhang Y. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett, 2008, 30(11): 1959-66
[3] Li Y, Lu AH, Ding HR, et al. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochemistry Communications, 2009, 11(7): 1496-1499
[4] Tandukar M, Huber SJ, Onodera T, et al. Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol, 2009, 43(21): 8159-65
[5] Huang L, Chen J, Quan X, et al. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosyst Eng, 2010, 33(8): 937-45
[6] Huang L, Chai X, Chen G, et al. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ Sci Technol, 2011, 45(11): 5025-31
[7] Huang LP, Chai XL, Cheng SA, et al. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chemical Engineering Journal, 2011, 166(2): 652-661
[8] Liu L, Yuan Y, Li F-B, et al. In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria. Bioresour Technol, 2011, 102(3): 2468-2473
[9] Heijne AT, Liu F, Weijden R, et al. Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol, 2010, 44(11): 4376-81
[10] Wang Z, Lim B, Lu H, et al. Cathodic Reduction of Cu2+ and Electric Power Generation Using a Microbial Fuel Cell. Bulletin of the Korean Chemical Society, 2010, 31(7): 2025-2030
[11] Tao HC, Li W, Liang M, et al. A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation. Bioresour Technol, 2011, 102(7): 4774-8
[12] Tao HC, Liang M, Li W, et al. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. J Hazard Mater, 2011, 189(1-2): 186-92
[13] Cheng SA, Wang BS, Wang YH. Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters. Bioresour Technol, 2013, 147: 332-7
[14] 梁敏, 陶虎春, 李绍峰, et al. 剩余污泥为底物的微生物燃料电池处理含铜废水. 环境科学, 2011, 32(1): 179-185
[15] 李浩然, 冯雅丽, 邹晓阎, et al. 钒冶金废水微生物异化还原过程. 中国有色金属学报, 2009, 19(9): 1700-1705
[16] Zhang BG, Zhou SG, Zhao HZ, et al. Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess Biosyst Eng, 2010, 33(2): 187-94
[17] Wang Z, Lim B, Choi C. Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresour Technol, 2011, 102(10): 6304-7
[18] Segundo JEDV, Salazar-Banda GR, Feitoza ACO, et al. Cadmium and lead removal from aqueous synthetic wastes utilizing Chemelec electrochemical reactor: Study of the operating conditions. Separation and Purification Technology, 2012, 88: 107-115
[19] Li Y, Zhang B, Cheng M, et al. Spontaneous arsenic (III) oxidation with bioelectricity generation in single-chamber microbial fuel cells. Journal of Hazardous Materials, 2016, 306: 8-12
[20] Yin Q, Zhu X, Zhan G, et al. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina. Journal of Environmental Sciences, 2016, 42: 210-4
[21] Wei LL, Han HL, Shen JQ. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell. International Journal of Hydrogen Energy, 2012, 37(17): 12980-12986
[22] Wang Z, Zheng Y, Xiao Y, et al. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells. Bioresour Technol, 2013, 144: 74-9
[23] 李颖, 孙永明, 孔晓英, et al. 微生物燃料电池中产电微生物的研究进展. 微生物 学通报, 2009, 36(9): 1404-1409
[24] Liu M, Shao J, Zhou B, et al. Progress in Research of Microbial Electricigenic Respiration(Chinese). Chinese Journal of Appplied Environmental Biology, 2010, 16(3): 445-452
[25] 赵丹, 谭金山, 郭培志, et al. 碱式碳酸铅单晶胶体纳米结构的低温液相合成与表征. 科学技术与工程, 2009, 9(24): 7452-7459
[26] 董传山, 李加智, 孙中溪. 碳酸铅及碱式碳酸铅的合成与转化. 济南大学学报(自然科学版), 2012, 26(1): 73-77
[27] Cao X, Ma LQ, Chen M, et al. Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci Total Environ, 2003, 307(1-3): 179-89 |