过程工程学报 ›› 2018, Vol. 18 ›› Issue (6): 1145-1159.DOI: 10.12034/j.issn.1009-606X.218275
孙昊延,朱庆山*,李洪钟
收稿日期:
2018-09-04
修回日期:
2018-09-26
出版日期:
2018-12-22
发布日期:
2018-12-19
通讯作者:
朱庆山 qszhu@ipe.ac.cn
基金资助:
Haoyan SUN, Qingshan ZHU*, Hongzhong LI
Received:
2018-09-04
Revised:
2018-09-26
Online:
2018-12-22
Published:
2018-12-19
Contact:
ZHU Qing-shan qszhu@ipe.ac.cn
摘要: 钒、钛是重要的生产生活资料,90%以上赋存于钒钛磁铁矿中. 我国钒钛磁铁矿资源储量丰富,但在当前高炉?转炉工业流程中,受高炉冶炼条件限制,钒钛磁铁精矿中的钛元素未能得到回收利用. 面对钒钛磁铁精矿铁钒钛资源全面提取利用难题和资源环保集约综合利用的迫切需求,直接还原?电炉熔分两步法流程受到广泛关注,其中流化床法因直接采用粉矿入炉、工序流程短、低温综合反应效率高,在直接还原工序中优势突出. 本工作阐述并对比了钒钛磁铁精矿流化床直接还原工艺,分析了钒钛磁铁精矿难还原的原因,重点介绍了流态化预氧化强化还原方法,同时归纳流化床直接还原过程中影响粘结失流的主要因素,总结了5种抑制铁矿粉粘结失流的直接方法,并提出了添加MgO惰性添加剂、碳包覆及改进床型结构的研究发展方向.
孙昊延 朱庆山 李洪钟. 钒钛磁铁矿流态化直接还原技术现状与发展趋势[J]. 过程工程学报, 2018, 18(6): 1145-1159.
Haoyan SUN Qingshan ZHU Hongzhong LI. The technical state and development trend of the direct reduction of titanomagnetite by fluidized bed[J]. Chin. J. Process Eng., 2018, 18(6): 1145-1159.
参考文献 [1] 赵海燕. 钒资源利用概况及我国钒市场需求分析[J]. 矿产保护与利用, 2014, (02): 54-58. Zhao H Y. Analysis of vanadium resources utilization and demand for vanadium in China[J]. Conservation and Utilization of Mineral Resources, 2014, (02): 54-58. [2] 陈东辉. 钒产业2016年年度评价[J]. 河北冶金, 2017, (10): 8-17. Chen D H. Annual evaluation for vanadium industry in 2016[J]. Hebei Metallurgy, 2017, (10): 8-17. [3] 孙康. 钛提取冶金物理化学[M]. 北京: 冶金工业出版社, 2001. Sun K. The physical of chemistry titanium extractive metallurgy[M]. Beijing: Metallurgical Industry Press, 2001. [4] 陈朝华. 钛白粉的性能及其在涂料中的应用[J]. 现代涂料与涂装, 2004, (3): 24-26. Chen C H. Performance of titanium dioxide pigment and its application in paints[J]. Modern Coating and Painting, 2004, (3): 24-26. [5] 杨邵利, 盛继符. 钛铁矿熔炼钛渣与生铁技术[M]. 北京: 冶金工业出版社, 2006. Yang S L, Sheng J F. Technology of ilmenite smelting to produce titanium slag and pig iron[M]. Beijing: Metallurgical Industry Press, 2006. [6] 王帅, 郭宇峰, 姜涛, 等. 钒钛磁铁矿综合利用现状及工业化发展方向[J]. 中国冶金, 2016, 26(10): 40-44. Wang S, Guo Y F, Jiang T, et al. Comprehensive utilization and industrial development direction of vanadium-titanium magnetite[J]. China Metallurgy, 2016, 26(10): 40-44. [7] 邓君, 薛逊, 刘功国. 攀钢钒钛磁铁矿资源综合利用现状与发展[J]. 材料与冶金学报, 2007, 6(2): 83-86. Degn J, Xue X, Liu G G. Current situation and development of comprehensive utilization of vanadium- bearing titanomagnetite at Pangang[J]. Journal of Materials and Metallurgy, 2007, 6(2): 83-86. [8] 杨邵利. 钒钛磁铁矿非高炉冶炼技术[M]. 北京: 冶金工业出版社, 2012. Yang S L. Non-blast furnace smelting technology of vanadium titano-magnetite[M]. Beijing: Metallurgical Industry Press, 2012. [9] 杨冬梅. 钒钛资源综合利用产业技术创新战略联盟在京成立[J]. 钢铁钒钛, 2011, 32: 6. Yang D M. Strategic alliances was built in Beijing for the industrial technology innovation of the comprehensive utilization of vanadium-titanium resources[J]. Iron Steel Vanadium Titanium, 2011, 32: 6. [10] Sun H Y, Wang J S, Dong X J, et al. A literature review of titanium slag metallurgical processes[J]. Metalurgia International, 2012, 17(7): 49-56. [11] Harada T, Tanaka H. Future steelmaking model by direct reduction technologies[J]. ISIJ International, 2011, 51(8): 1301-1307. [12] 储满生, 唐珏, 柳政根, 等. 高铬型钒钛磁铁矿综合利用现状及进展[J]. 钢铁研究学报, 2017, 29(05): 335-344. Chu M S, Tang Y, Liu Z G, et al. Present situation and progress of comprehensive utilization for high-chromium vanadium-bearing titanomagnetie[J]. Journal of Iron & Steel Research, 2017, 29(05): 335-344. [13] 邵剑华. 流态化炼铁技术的必要性与研究现状[J]. 中国冶金, 2011, 21(08): 1-7. Shao J H. Necessity of fluidized bed process for ironmaking in China and research progress[J]. China Metallurgy, 2011, 21(08): 1-7. [14] 方觉. 非高炉炼铁工艺与理论(第二版)[M]. 北京: 冶金工业出版社, 2012. Fang J. Technology and theory of non-blast furnace ironmaking(second edition)[M]. Beijing: Metallurgical Industry Press, 2012. [15] 范建峰, 李维国, 周渝生, 等. 流化床处理粉铁矿工艺研究[J]. 钢铁, 2007, 42(11): 17-20. Fan J F, Li W G, Zhou Y S, et al. An introduction to processes for fine iron ore treating in fluidized bed[J]. Iron and Steel, 2007, 42(11): 17-20. [16] Primetals Technologies. The FINEX process[Z]. Austria: Climatepartner, 2015. [17] 朱凯荪. 2.2t/炉级流态化还原钒钛磁铁矿试验研究[J]. 钢铁, 1987, 22(7): 39-42. Zhu K S. The experimental study on the direct reduction of vanadium titanium magnetite ore by fluidized bed in 2.2t per furnace scale[J]. Iron and Steel, 1987, 22(7): 39-42. [18] Sun H, Adetoro A A, Wang Z, et al. Direct reduction behaviors of titanomagnetite ore by carbon monoxide in fluidized bed[J]. ISIJ International, 2016, 56(6): 936-943. [19] 攀枝花资源综合利用办公室. 攀枝花资源综合利用科研报告汇编(第六卷)[R]. 重庆: 攀枝花资源综合利用办公室, 1985. Panzhihua Resources Comprehensive Utilization Office. Research report collection of Panzhihua resources comprehensive utilization (The sixth volume)[R]. Chongqing: Panzhihua Resources Comprehensive Utilization Office, 1985. [20] 薛逊. 钒钛磁铁矿直接还原实验研究[J]. 钢铁钒钛, 2007, 28(3): 37-41. Xue X. Research on direct reduction of vanadic titanomagnetite [J]. Iron Steel Vanadium Titanium, 2007, 28(3): 37-41. [21] Battle T, Srivastava U, Kopfle J, et al. Treatise on process metallurgy, The direct reduction of iron [M]. Amsterdam, Netherlands: Elsevier Ltd., 2014. [22] 程希翱. 钒钛磁铁矿的工艺矿物学研究[J]. 矿冶工程, 1983, 3(4): 27-32. Chegn X A. A study on process mineralogy of vanadium-bearing titaniferous magnetites[J]. Mining and Metallurgical Engineering, 1983, 3(4): 27-32. [23] Park E, Ostrovski O. Reduction of titania-ferrous ore by hydrogen[J]. ISIJ International, 2004, 44(6): 999-1005. [24] 孙昊延, Adetoro Ajala Adewole, 王珍, 等. 钒钛磁铁矿气基直接还原过程机制及相变调控强化[C]. 乌鲁木齐: 2016年全国非高炉炼铁学术年会, 2016. Sun H Y, Adetoro A A, Wang Z, et al. The reaction mechanism and phase transform controlling in the vanadium-titanium magnetite direct reduction process [C]. Wulumuqi: 2016 China non-blast furnace ironmaking academic annual conference, 2016. [25] 黄希枯. 钢铁冶金原理[M]. 北京: 冶金工业出版社, 2007. Huang X K. Principle of iron and steel metallurgy[M]. Beijing: Metallurgical Industry Press, 2007. [26] Gupta S K, Rajkumar V, Grieveson P. The role of preheating in the kinetics of reduction of ilmenite with carbon[J]. Canadian Metallurgical Quarterly, 1990, 29(1): 43-49. [27] Jones D G. Kinetics of gaseous reduction of ilmenite[J]. Journal of Applied Chemical Technology & Biotechnology, 1975, 25: 561-582. [28] Merk R, Pickles C A. Reduction of ilmenite by carbon monoxide[J]. Canadian Metallurgical Quarterly, 1988, 27(3): 179-185. [29] Adetoro A A, Sun H Y, He S Y, et al. Effects of low-temperature pre-oxidation on the titanomagnetite ore structure and reduction behaviors in a fluidized bed[J]. Metallurgical and Materials Transactions B, 2018, 49(2): 846-857. [30] 郭占成, 公旭中. 流态化还原铁矿粉黏结机理及抑制技术[M]. 北京: 科学出版社, 2015. Guo Z C, Gong X Z. Sticking mechanism and suppression technology of fluidized reduced iron ore power[M]. Beijing: Science Press, 2015. [31] Zhong Y W, Wang Z, Guo Z C, et al. Defluidization behavior of iron powders at elevated temperature: influence of fluidizing gas and particle adhesion[J]. Powder Technology, 2012, 230: 225-231. [32] Komatina M, Gudenau H W. The sticking problem during direct reduction of fine iron ore in the fluidized bed[J]. Metalurgija - Journal of Metallurgy, 2004: 309-328. [33] 张奔. Fe2O3颗粒流态化气体还原粘结失流基础研究[D]. 北京: 北京科技大学, 2013. Zhang B. Research on sticking problem during reduction of Fe2O3 particles with gases in fluidized bed[D]. Beijing: University of Science and Technology Beijing, 2013. [34] 钟怡玮. 气固高温流态化反应过程粘结失流机理研究[D]. 北京: 中国科学院过程工程研究所, 2013. Zhong Y W. Mechanism of agglomeration/defluidization in gas-solid fluidization reaction process at high temperatures[D]. Beijing: Institute of Process Engineering Chinese Academy of Sciences, 2013. [35] 西泽泰二. 微观组织热力学[M]. 北京: 化学工业出版社, 2006. Nishizawa T. Microcosmic material structure thermodynamics[M]. Beijing: Chemical Industry Press, 2006. [36] Hayashi S, Iguchi Y. Factors affecting the sticking of fine iron ores during fluidized bed reduction[J]. ISIJ International, 1992, 32(9): 962-971. [37] 郭汉杰. 冶金物理化学(第二版)[M]. 北京: 冶金工业出版社, 2006. Guo H J. Physical chemistry of metallurgy(second edition)[M]. Beijing: Metallurgical Industry Press, 2006. [38] Chatterjee A. Sponge iron production by direct reduction of iron oxide[M]. Delhi: PHI Learning, 2014. [39] Langston B G, Stephens F M. Self-agglomerating fluidized-bed reduction[J]. JOM, 1960, 12(4): 312-316. [40] 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2008. Guo M S, Li H Z. Handbook of fluidization[M]. Beijing: Chemical Industry Press, 2008. [41] Nicolle R, Rist A. The mechanism of whisker growth in the reduction of wustite[J]. Metallurgical Transactions B, 1979, 10: 429-438. [42] Sun H Y, Dong X J, She X F, et al. Solid state reduction of titanomagnetite concentrate by graphite[J]. ISIJ International, 2013, 53(4): 564-569. [43] 郭慕孙. 钒钛铁矿综合利用-流态化还原法[J]. 钢铁, 1979, 14(6): 1-12. Guo M S. Comprehensive utilization of titaniferous iron ore containing vanadium – fluidized reduction[J]. Iron and Steel, 1979, 14(6): 1-12. [44] 侯宝林. 循环流化床中结构与“三传一反”的关系研究[D]. 北京: 中国科学院过程工程研究所, 2011. Hou B L. Basic researches on relationship between flow structure and “transport phenomena - reaction” in cirulating fluidized bed[D]. Beijing: Institute of Process Engineering Chinese Academy of Sciences, 2011. [45] 庞建明, 郭培民, 赵沛, 等. 氢气还原氧化铁动力学的非等温热重方法研究[J]. 钢铁, 2009, 44(02): 11-14. Pang J M, Guo P M, Zhao P, et al. Kinetics of reduction of hematite by H2 using nonisothermal thermogravimetric method[J]. Iron and Steel, 2009, 44(02): 11-14. [46] 邵剑华, 郭占成, 唐惠庆. 流态化还原铁精粉粘结过程试验研究[J]. 钢铁, 2011, 46(02): 7-11. Shao J H, Guo Z C, Tang H Q. Experimental study on sticking process during reduction of iron ore concentrate fines in fluidized bed [J]. Iron and Steel, 2011, 46(02): 7-11. [47] 周勇, 张涛, 唐海龙. 铁矿粉流化床直接还原防止粘结的试验研究[J]. 钢铁钒钛, 2012, 33(04): 34-39. Zhou Y, Zhang T, Tang H L. Experimental study on sticking prevention in fludized bed reduction of iron ore powder[J]. Iron Steel Vanadium Titanium, 2012, 33(04): 34-39. [48] Hayashi S, Sawai S, Iguchi Y. Influence of coating oxide and sulfur pressure on sticking during fluidized bed reduction of iron ores[J]. 2013, 33(10): 1078-1087. [49] 杨若薰, 郭慕孙. 攀枝花铁精矿流态化气体还原中粘结失流的研究[J]. 化工冶金, 1980, (02): 100-115. Yang R X, Guo M S. The defluidization of Panzhihua iron ore concentrate in the fluidized bed gas reduction[J]. Chemical Metallurgy, 1980, (02): 100-115. [50] Zhong Y W, Wang Z, Guo Z C, et al. Prevention of agglomeration/defluidization in fluidized bed reduction of Fe2O3 by CO: The role of magnesium and calcium oxide[J]. Powder Technology, 2013, 241: 142-148. [51] Du Z, Zhu Q S, Yang Y F, et al. The role of MgO powder in preventing defluidization during fluidized bed reduction of fine iron ores with different iron valences[J]. Steel Research International, 2016, 87(12): 1742-1749. [52] Neuschütz D. Sticking prevention during fine-ore metallization in two-stage smelting-reduction processes[J]. Steel Research, 1991, 62(8): 333-337. [53] 朱凯荪, 陆克从, 李卫国. 熔融还原流态化预还原中铁精矿粉附碳处理的最佳化[J]. 华东冶金学院学报, 1992, 9(2): 17-20. Zhu K S, Lu K C, Li W G. The best option of the parameters in the process of adhering to carbon black during fluidization pre-reduction of iron ore concentrate in smelting reduction[J]. Journal of East China University of Metallurgy, 1992, 9(2): 17-20. [54] Lei C, Zhang T, Zhang J B, et al. Influence of content and microstructure of deposited carbon on fluidization behavior of iron powder at elevated temperatures[J]. ISIJ International, 2014, 54(3): 589-595. [55] 雷超. 碳包覆抑制铁矿粉流态化还原粘结失流研究[D]. 北京: 中国科学院过程工程研究所, 2015. Lei C. Defluidization prevention by carbon coating for direct reduction of fine iron ore in a fluidized bed reactor[D]. Beijing: Institute of Process Engineering Chinese Academy of Sciences, 2015. [56] Guo Q J, Liu H E, Shen W Z, et al. Influence of sound wave characteristics on fluidization behaviors of ultrafine particles[J]. Chemical Engineering Journal, 2006, 119(1): 1-9. [57] Zhu Q S, Li H Z. Study on magnetic fluidization of group C powders[J]. Powder Technology, 1996, 86: 179-185. [58] Valverde J M, Castellanos A. Effect of vibration on agglomerate particulate fluidization[J]. AIChE Journal, 2010, 52(5): 1705-1714. [59] 宋乙峰, 朱庆山. 搅拌流化床中超细氧化铁粉流态化及还原实验研究[J]. 过程工程学报, 2011, 11(3): 361-367. Song Y F, Zhu Q S. Experimental study on fluidization and reduction of ultrafine iron oxide powder in an agitation fluidized bed[J]. The Chinese Journal of Process Engineering, 2011, 11(3): 361-367. [60] Lei C, Zhu Q S, Li H Z. Experimental and theoretical study on the fluidization behaviors of iron powder at high temperature[J]. Chemical Engineering Science, 2014, 118: 50-59. [61] 铁摩辛柯, 古地尔. 弹性理论(第3版)[M]. 北京: 清华大学出版社出版, 2007. Timoshenko S P, Goodier J N. Theory of elasticity(third edition)[M]. Beijing: Tsinghua University Press, 2007. [62] Mikami T, Kamiya H, Horio M. The mechanism of defluidization of iron particles in a fluidized bed[J]. 1996, 89(3): 231-238. [63] Zhu Q S, Wu R F, Li H Z. Direct reduction of hematite powders in a fluidized bed reactor[J]. Particuology, 2013(11): 294-300. [64] Li J, Liu X W, Zhou L, et al. A two-stage reduction process for the production of high-purity ultrafine Ni particles in a micro-fluidized bed reactor[J]. Particuology, 2015, 19: 27-34. [65] Li J, Kong J, Zhu Q S, et al. Efficient synthesis of iron nanoparticles by self-agglomeration in a fluidized bed[J]. AIChE Journal, 2017, 63(2): 459-468. [66] Srinivasan N S. Reduction of iron oxides by carbon in a circulating fluidized bed reactor[J]. Powder Technology, 2002, 124: 28-39. [67] Ozawa M. Spouted bed reduction of iron ore[J]. Tetsu-to-Hagane, 1973, 59(3): 361-371. [68] Kim Y H, Lee I O, Kim H G. Fluidized bed type reducing system for reducing fine iron ore: US6224819[P]. 2000-12-20. [69] Lee I O, Kim Y H, Jung B J, et al. Fluidized bed type reduction apparatus for iron ore particles and method for reducing iron ore particles using the apparatus: US5785733[P]. 1998-07-28. [70] Geldart D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292. [71] Chaouki J, Chavarie C, Klvana D, et al. Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels[J]. Powder Technology, 1985, 43(2): 117-125. [72] Tong H, Li H Z. Floating internals in fast bed of cohesive particles[J]. Powder Technology, 2009, 190(3): 401-409. [73] He S Y, Sun H Y, Hu C Q, et al. Direct reduction of fine iron ore concentrate in a conical fluidized bed[J]. Powder Technology, 2017, 313: 161-168. [74] 何盛一. 锥形流化床中细铁粉矿直接还原过程强化[D]. 中国科学院大学(中国科学院过程工程研究所), 2017. He S Y. Process intensification for direct reducing fine iron ore concentrates via conical fluidized beds[D]. Beijing: Institute of Process Engineering Chinese Academy of Sciences, 2017. [75] Wang Z, Liu X W, Zhang L, et al. The influence of composition on crystallization and liberation behavior of Ti-rich phase in Ti-bearing slags[J]. Transactions of the Indian Institute of Metals, 2016, 69(1): 97-105. |
[1] | 赵晓腾 周新涛 罗中秋 韦宇 兰雄 陆艳. 二氧化钛基复合材料对常见染料的去除性能及其机理研究进展[J]. 过程工程学报, 2022, 22(9): 1169-1180. |
[2] | 田玉龙 杨秀山 孔行健 许德华 张志业. 磷石膏颗粒湍动流化特性实验及模拟[J]. 过程工程学报, 2022, 22(9): 1224-1231. |
[3] | 靳波 张亚新. 颗粒尺度下混合催化剂床层中CO2加氢反应体系数值模拟[J]. 过程工程学报, 2022, 22(8): 1040-1052. |
[4] | 白浩隆 付亮亮 许光文 白丁荣. 典型尺寸燃煤颗粒富氧燃烧特性及燃烧本征动力学研究[J]. 过程工程学报, 2022, 22(8): 1115-1123. |
[5] | 徐家明 皇甫林 史玉婷 郭洪范 高士秋 李长明 余剑. 低温烟气脱硝催化剂制备工艺及性能探究[J]. 过程工程学报, 2022, 22(7): 863-872. |
[6] | 张炜 刘文津 张玉明 李家州 岳君容. 高温加压微型流化床内脉冲气射流扰动的数值模拟[J]. 过程工程学报, 2022, 22(7): 944-953. |
[7] | 陶润萍 董伟强 胡庆松 朱靖 王智鑫 徐轶群. Brij30/β-FeOOH/GO复合材料的可控构筑及其对盐酸四环素吸附性能[J]. 过程工程学报, 2022, 22(7): 979-988. |
[8] | 魏汝飞 孟东祥 李家新 龙红明 朱玉龙 李振营. 机械活化条件下超细铁矿粉一氧化碳还原特性及机理[J]. 过程工程学报, 2022, 22(7): 891-899. |
[9] | 王书欢 周理龙 李正杰 韩继龙 刘润静 Jimmy Yun. 催化臭氧氧化降解水中有机污染物的研究进展[J]. 过程工程学报, 2022, 22(5): 586-600. |
[10] | 陈秋汀 吴楠 吴颉 王晓军 马光辉. Al-Pickering乳液提高口蹄疫疫苗热稳定性的应用[J]. 过程工程学报, 2022, 22(4): 469-477. |
[11] | 黄硕 胡雨欣 沙露平 刘剑桥 郭永学. 响应曲面法优化植物甾醇固体自微乳的工艺条件[J]. 过程工程学报, 2022, 22(4): 533-541. |
[12] | 曾维冬 丁翠娇 戴方钦 郭悦 潘卢伟 陈平安. 退火气氛中CO2含量及加热时间对钢坯氧化的影响[J]. 过程工程学报, 2022, 22(3): 376-384. |
[13] | 张晟林 于佳元 王蕾 闫瑞一 李春山. 磷钼钒酸催化甲基丙烯醛氧化反应机制及过程研究[J]. 过程工程学报, 2022, 22(3): 385-392. |
[14] | 孙思涵 潘福生 谢勇冰 曹宏斌 张懿. 化学氧化强化湿法冶金清洁生产:进展与展望[J]. 过程工程学报, 2022, 22(2): 145-161. |
[15] | 侯雪艳 泥立豪 赵海涛 张文博 张玉琦 王记江. 明胶基天然高分子/氧化石墨烯复合微胶囊的制备及调湿性能[J]. 过程工程学报, 2022, 22(2): 214-221. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||