[1] Khodayari R, Odenbrand C U I. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants [J]. Environmental, 2001, 30: 87-99.
[2] 段竞芳, 史伟伟, 夏启斌, 等. 失活钒钛基SCR催化剂性能表征及其再生[J]. 功能材料. 2012(16):2191-5.Duan J F ,Shi W W, Xia Q B , et, al. Characterization and regeneration of deactivated commercial SCR catalyst. [J]. Journal of Functional Materials. 2012(16):2191-5.
[3] Amiridis M.D, Duevel R.V., Wachs I.E. The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia[J]. Appl Catal B-Environ, 1999, 20(2): 11-22.
[4] Finocchio E, Baldi M, Busca G, Pistarino C, Romezzano G, Bregani F, et al. A study of the abatement of VOC over V2O5-WO3-TiO2 and alternative SCR catalyst [J]. Catalysis Today, 2000, 59(3): 261-268.
[5] 曾瑞. 有关我国SCR废催化剂回收产业的思考[J] .中国环保产业.2013(04): 55-61.Zeng R. Consideration on Reclaiming Industry of SCR Waste Catalyzer in China[J]. China Environmental Protection Industry.2013(04): 55-61.
[6] Choung J.W., Nam I.S., Ham S.W. Effect of promoters including tungsten and barium on the thermal stability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3[J]. Catalysis Today, 2006,111(3-4): 242-247.
[7] 中国环境保护产业协会脱硫脱硝委员会,北京. 脱硫脱硝行业2015年发展综述[J]. 中国环保产业, 2017(1):6-21.Desulfurization and Denitration Committee of CAEPI, Beijing. Development Report on Desulfurization and Denitration Industries in 2015[J]. China Environmental Protection Industry,2017(1):6-21.
[8] Zeng L, Cheng C.Y.. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts[J]. Hydrometallurgy, 2009, 98(1-2): 1-20.
[9] 张琛, 刘建华, 杨晓博. 超声强化废SCR催化剂浸出V和W的研究[J]. 功能材料, 2015, 20(46): 20063-20067.Zhang C, Liu J H Yang X B .Ultrasound assited enhancement in vanadium and tungsten leaching from waste SCR catalyst[J]. Journal of Functional Materials,2015, 20(46): 20063-20067.
[10] 朱跃, 何胜, 张扬. 从废烟气脱硝催化剂中回收金属氧化物的方法, CN 101921916 A[P]. 2010.Zhu Y, He S, Zhang Y. Method for recovering metal oxide from waste flue gas denitrification catalyst, CN 101921916 A[P]. 2010.
[11] 霍怡廷, 常志东, 董彬, 等. 一种SCR废烟气脱硝催化剂的回收方法,CN 103526031 A [P].2014.Huo Y T, Chang Z D, Dong B, et, al. Method for recovering spend SCR catalyst, CN 103526031 A [P].2014.
[12] 刘清雅,刘振宇,李启超. 一种从废弃钒钨钛基催化剂中回收钒、钨和钛的方法, CN 103484678 A [P].2014.Liu Q Y, Liu Z Y, Li Q C. Method for recovering V, W andTi from spent V W-Ti-based catalyst, CN 103484678 A [P].2014
[13] 宋阜, 朱宾权. 离子交换法分离富集钨酸钠溶液中的钒[J]. 稀有金属与硬质合金, 2006, 34(03): 5-11.Song F, Zhu B Q. Extraction of Vanadium from Sodium Tungstats by Ion Exchange[J]. Rare Metals and Cemented Carbides, 2006, 34(03): 5-11.
[14] Nguyen T H, Man S L. Recovery of molybdenum and vanadium with high purity from sulfuric acid leach solution of spent hydrodesulfurization catalysts by ion exchange[J]. Hydrometallurgy, 2014, 147-148(8):142-147.
[15] Nguyen T H, Man S L. Separation of Vanadium and Tungsten from Sodium Molybdate Solution by Solvent Extraction[J]. Ind.eng.chem.res, 2014, 53(20):8608-8614.
[16] Neková? P, Schr?tterová D. Extraction of V(V), Mo(VI) and W(VI) polynuclear species by primene JMT[J]. Chemical Engineering Journal, 2000, 79(3):229-233.
[17] 刘梦, 王华静, 王鲲鹏, 等. 腐植酸对水体中五价钒的吸附[J]. 农业环境科学学报, 2016, 35 (5): 969-975.Liu M, Wang H J, Wang K P, et al. Adsorption of pentavalent vanadium by humic acid in water[J]. Journal of Agro-Environment Science,2016, 35(5): 969-975.
[18] Luo L, Miyazaki T, Shibayama A, et al. A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap[J]. Minerals Engineering, 2003, 16(7):665-670.
[19] 阳亚玲, 颜文斌, 高峰. 离子交换树脂分离钒渣浸出液中钒与铬[J]. 过程工程学报, 2017, 17(01):84-91.Yang Y L, Yan W B, Gao F. Separation of V2O5 and Cr(VI) from Vanadium Slag Leaching Solution by Ion Exchange Resin[J]. The Chinese Journal of Process Engineering, 2017, 17(01):84-91.
[20] Zhang L, Liu X, Xia W, et al. Preparation and characterization of chitosan-zirconium(IV) composite for adsorption of vanadium(V).[J]. International Journal of Biological Macromolecules, 2014, 64(2):155-161.
[21] Crane R A, Scott T B. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology[J]. Journal of Hazardous Materials, 2012, s 211–212(211-212):112-125.
[22] Liu, T., Z. Wang and Y. Sun, Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater. Chemical Engineering Journal, 2015. 263: p. 55-61.
[23] Habish, A.J., et al., Nanoscale zerovalent iron (nZVI) supported by natural and acid-activated sepiolites: the effect of the nZVI/support ratio on the composite properties and Cd2+ adsorption. Environmental Science and Pollution Research, 2017. 24(1): p. 628-643.
[24] Qian, L., et al., Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal. Environmental Pollution, 2017. 223: p. 153-160.
[25] Petala, E., et al., Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 2013. 261: p. 295-306.
[26] Shi, L., X. Zhang and Z. Chen, Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 2011. 45(2): p. 886-892.
[27] Liu, T., et al., Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: Pumice-supported nanoscale zero-valent iron. Chemical Engineering Journal, 2014. 245: p. 34-40.
[28] Chen, W., et al., Recovery of indium ions by nanoscale zero-valent iron. Journal of Nanoparticle Research, 2017. 19(3).
[29] Petala E, Dimos K, Douvalis A, et al. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2013, 261(13):295-306.
[30] Liu A, Liu J, Han J, et al. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides[J]. Journal of Hazardous Materials, 2017, 322(Pt A):129.
[31] Azizian S. Kinetic models of sorption: a theoretical analysis[J]. Journal of Colloid & Interface Science, 2004, 276(1):47.
[32] Boparai H K, Joseph M, O'Carroll D M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles.[J]. Journal of Hazardou s Materials, 2011, 186(1):458-65.
[33] Sun Y.P., Li X.Q., Cao J.S., et al. Characterization of zero-valent iron nanoparticles[J]. Advances in Colloid and Interface Science, 2006, 120(1): 47-56.
[34] Li S, Wang W, Liang F, et al. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application.[J]. Journal of Hazardous Materials, 2016, 322:163-171.
[35] Peacock C L, Sherman D M. Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy[J]. Geochimica Et Cosmochimica Acta, 2004, 68(8):1723-1733.
|