[1] N.A. Travlou, T.J. Bandosz. N-doped polymeric resin-derived porous carbons as efficient ammonia removal and detection media[J]. Carbon , 2017, 117: 228-239.
[2] J.W. Erisman, A. Bleeker, J. Galloway, M.S. Sutton. Reduced nitrogen in ecology and the environment[J]. Environmental Pollution, 2007, 150: 140-149.
[3] A. Yokozeki, M.B. Shiflett.. Ammonia solubilities in room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2007, 46 : 1605-1610.
[4] J.J. Zhu, D.H. Xiao, J. Li, X.G. Yang, Y. Wu. Effect of Ce on NO direct decomposition in the absence/presence of O2 over La1-xCexSrNiO4 (0 <= x <= 0.3) [J]. Journal of Molecular Catalysis a-Chemical, 2005, 234 : 99-105.
[5] J.L. Hueso, J. Cotrino, A. Caballero, J.P. Espinos, A.R. Gonzalez-Elipe. Plasma catalysis with perovskite-type catalysts for the removal of NO and CH4 from combustion exhausts[J]. Journal of Catalysis, 2007, 247: 288-297.
[6] W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer, J. Economy, Activated carbon fiber composites for gas phase ammonia adsorption[J]. Microporous and Mesoporous Materials, 2016, 234 : 146-154.
[7] 许俊香, 刘本生, 孙钦平等. 沸石添加剂对污泥堆肥过程中的氨挥发及相关因素的影响[J]. 农业资源与环境学报, 2015, 32(1):81-86.
XU Jun-xiang, LIU Ben-sheng, SUN Qin-ping, et al. Effects of Zeolite Addition on Ammonia Volatilization and Influence Factors in Sludge Composting[J]. Journal of Agricultural Resources and Environment, 2015, 32:81-86.
[8] 王秀艳, 刘长礼. 对粘性土孔隙水渗流规律本质的新认识[J]. 地球学报, 2003,24(1): 91-95.
WANG Xi uyan , LI U Changli. New understandi ng of t he regularity of water seepage i n Cohesive soil[J]. acta geoscientia sinica, 2003,24(1): 91-95.
[9] A. Srebowata, R. Baran, D. Lomot, D. Lisovytskiy, T. Onfroy, S. Dzwigaj. Remarkable effect of postsynthesis preparation procedures on catalytic properties of Ni-loaded BEA zeolites in hydrodechlorination of 1,2-dichloroethane[J]. Applied Catalysis B-Environmental, 2014, 147: 208-220.
[10] M.P. Bernal, J.M. Lopezreal. NATURAL ZEOLITES AND SEPIOLITE AS AMMONIUM AND AMMONIA ADSORBENT MATERIALS[J]. Bioresource Technology, 1993, 43: 27-33.
[11] J. Helminen, J. Helenius, E. Paatero, I. Turunen. Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K[J]. Journal of Chemical and Engineering Data , 2001, 46 : 391-399.
[12] 翁晴. 改性沸石在水处理中的应用[J]. 山东化工, 2014, 43(1): 54-55.
WENG Qing. The Application of Modify Zeolite in Water Treatment[J]. Shandong chemical industry, (2014) 54-55.
[13] T.G. Glover, G.W. Peterson, B.J. Schindler, D. Britt, O. Yaghi. MOF-74 building unit has a direct impact on toxic gas adsorption[J]. Chemical Engineering Science , 2001, 66: 163-170.
[14] E. Witter, H. Kirchmann, PEAT. ZEOLITE AND BASALT AS ADSORBENTS OF AMMONIACAL NITROGEN DURING MANURE DECOMPOSITION[J]. Plant and Soil, 1989, 115: 43-52.
[15] 万政钰. 利用改性沸石吸附剂处理氨气的研究[D]. 吉林大学, 2009.
Wan Zhengyu, Study on the Treatment of Ammonia Using Modified Zeolite Adsorbent[D]. Jilin University, 2009.
[16] H. Taghipour, M.R. Shahmansoury, B. Bina, H. Movahdian. Operational parameters in biofiltration of ammonia-contaminated air streams using compost-pieces of hard plastics filter media[J]. Chemical Engineering Journal, 2008, 137 : 198-204.
[17] 杨国华, 黄统琳, 姚忠亮,等. 吸附剂的应用研究现状和进展[J]. 化学工程与装备, 2009, 6:83-88.
Yang Guo Hua, Huang Tong Lin, Yao Zhongliang, et al. Current Application Research on the Adsorbents and Their Development Tendency[J]. Chemical Engineering&Equipment, 2009, 6:83-88.
[18] 张滢, 张景成, 崔自敏, 等. 铝基吸附剂去除饮用水中氟的研究进展[J]. 环境科学与技术, 2012, 35(4): 93-98.
ZHANG Ying, ZHANG Jing-cheng, CUI Zimin, et al. Development of Alumina-based Materials in Defluoridation of Drinking Water[J]. Environmental Science&Technology, 2012, 35(4): 93-98.
[19] S. Abe, T. Sawane, K. Sekiguchi, T. Matsuo. COLLECTION OF TRACE FLUORIDE AND HYDROFLUORIC-ACID FROM AQUEOUS SAMPLES BY CALCIUM HYDROXYAPATITE[J]. International Journal of Environmental Analytical Chemistry, 1982, 11: 87-96.
[20] V.E. Sharonov, Y.I. Aristov. Ammonia adsorption by MgCl2, CaCl2 and BaCl2 confined to porous alumina: The fixed bed adsorber[J]. Reaction Kinetics and Catalysis Letters, 2005, 85: 183-188.
[21] D. Saha, S.G. Deng. Characteristics of Ammonia Adsorption on Activated Alumina[J]. Journal of Chemical and Engineering Data, 2010, 55: 5587-5593.
[22] C. Yeom, Y. Kim. Adsorption of ammonia using mesoporous alumina prepared by a templating method[J]. Environmental Engineering Research, 2017, 22 : 401-406.
[23] 管蒙蒙, 邱建勋, 高修涛, 等. Sol-gel法制备多孔氧化铝及其对甲醛的吸附研究[J]. 山东化工, 2008, 37(4): 4-6+10.
GUAN Mengmeng, QIU JianXun, GAO Xiutao, et al. Research on Preparation of Alumina with Sol-gel Method and Its Adsorption Property for Formaldehyde [J]. Shandong chemical industry, 2008, 37(4): 4-6+10.
[24] S. Kittaka, M. Morimura, S. Ishimaru, A. Morino, K. Ueda. Effect of Confinement on the Fluid Properties of Ammonia in Mesopores of MCM-41 and SBA-15[J]. Langmuir, 2009, 25: 1718-1724.
[25] A.M.B. Furtado, Y. Wang, T.G. Glover, M.D. LeVan. MCM-41 impregnated with active metal sites: Synthesis, characterization, and ammonia adsorption[J]. Microporous and Mesoporous Materials, 2011, 142 : 730-739.
[26] H. Fortier, P. Westreich, S. Selig, C. Zelenietz, J.R. Dahn. Ammonia, cyclohexane, nitrogen and water adsorption capacities of an activated carbon impregnated with increasing amounts of ZnCl2, and designed to chemisorb gaseous NH3 from an air stream[J]. J. Colloid Interface Sci, 2008, 320: 423-435.
[27] A.M. Furtado, D. Barpaga, L.A. Mitchell, Y. Wang, J.B. DeCoste, G.W. Peterson, M.D. Levan. Organoalkoxysilane-grafted silica composites for acidic and basic gas adsorption[J]. Langmuir, 2012, 28: 17450-17456.
[28] A.M.B. Furtado, Y. Wang, M.D. LeVan. Carbon silica composites for sulfur dioxide and ammonia adsorption[J]. Microporous and Mesoporous Materials, 2013, 165 : 48-54.
[29] A.M.B. Furtado, J. Liu, Y. Wang, M.D. LeVan. Mesoporous silica–metal organic composite: synthesis, characterization, and ammonia adsorption[J]. Journal of Materials Chemistry, 2011, 21 :6698.
[30] H.S. Teng, T.S. Yeh, L.Y. Hsu. Preparation of activated carbon from bituminous coal with phosphoric acid activation[J]. Carbon , 1998,36: 1387-1395.
[31] C.-C. Huang, H.-S. Li, C.-H. Chen. Effect of surface acidic oxides of activated carbon on adsorption of ammonia[J]. Journal of hazardous materials ,2008,159 :523-527.
[32] A. Qajar, M. Peer, M.R. Andalibi, R. Rajagopalan, H.C. Foley. Enhanced ammonia adsorption on functionalized nanoporous carbons[J]. Microporous and Mesoporous Materials, 2015, 218: 15-23.
[33] X.S.S.Z.W. Zhang. Effect of surface modification of activated carbon on its adsorption capacity for NH3[J]. Journal of China University of Mining & Technology, 2008,18: 0261-0265.
[34] C. Petit, C. Karwacki, G. Peterson, T.J. Bandosz. Interactions of ammonia with the surface of microporous carbon impregnated with transition metal chlorides[J]. Journal of Physical Chemistry C, 2007, 111: 12705-12714.
[35] C. Petit, K. Kante, T.J. Bandosz. The role of sulfur-containing groups in ammonia retention on activated carbons[J]. Carbon, 2010, 48 : 654-667.
[36] M. Seredych, T.J. Bandosz. Mechanism of ammonia retention on graphite oxides: Role of surface chemistry and structure[J]. Journal of Physical Chemistry C,2007, 111:15596-15604.
[37] M. Seredych, A.V. Tamashausky, T.J. Bandosz. Graphite Oxides Obtained from Porous Graphite: The Role of Surface Chemistry and Texture in Ammonia Retention at Ambient Conditions[J]. Advanced Functional Materials, 2010, 20: 1670-1679.
[38] T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, G. Zhu. Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area[J]. Angewandte Chemie-International Edition, 2009, 48 : 9457-9460.
[39] J.F. Van Humbeck, T.M. McDonald, X. Jing, B.M. Wiers, G. Zhu, J.R. Long. Ammonia capture in porous organic polymers densely functionalized with Bronsted acid groups[J]. J Am Chem Soc, 2014, 136: 2432-2440.
[40] D.T. McQuade, A.E. Pullen, T.M. Swager. Conjugated polymer-based chemical sensors[J]. Chemical reviews, 2000, 100 :2537-2574.
[41] C.J. Doonan, D.J. Tranchemontagne, T.G. Glover, J.R. Hunt, O.M. Yaghi. Exceptional ammonia uptake by a covalent organic framework[J]. Nature Chemistry, 2010, 2: 235-238.
[42] W.-J. Kim. Studies on Adsorption and Desorption of Ammonia Using Covalent Organic Framework COF-10[J]. Applied Chemistry for Engineering, 2016, 27 : 265-269.
[43] Y. Li, R.T. Yang. Hydrogen storage in metal-organic and covalent-organic frameworks by spillover[J]. Aiche Journal, 2008, 54: 269-279.
[44] P. Kuhn, M. Antonietti, A. Thomas, Porous. covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie-International Edition, 2008, 47: 3450-3453.
[45] D. Britt, D. Tranchemontagne, O.M. Yaghi. Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 11623-11627.
[46] D. Saha, S. Deng. Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177[J]. Journal of Colloid and Interface Science, 2010, 348: 615-620.
[47] C. Petit, T.J. Bandosz. Enhanced Adsorption of Ammonia on Metal-Organic Framework/Graphite Oxide Composites: Analysis of Surface Interactions[J]. Advanced Functional Materials, 2010, 20: 111-118.
[48] C. Petit, L. Huang, J. Jagiello, J. Kenvin, K.E. Gubbins, T.J. Bandosz. Toward Understanding Reactive Adsorption of Ammonia on Cu-MOF/Graphite Oxide Nanocomposites[J]. Langmuir, 2011, 27: 13043-13051.
[49] G.W. Peterson, G.W. Wagner, A. Balboa, J. Mahle, T. Sewell, C.J. Karwacki. Ammonia Vapor Removal by Cu-3(BTC)(2) and Its Characterization by MAS NMR[J]. Journal of Physical Chemistry C, 2009, 113: 13906-13917.
[50] B. Tan, C. Chen, L.-X. Cai, Y.-J. Zhang, X.-Y. Huang, J. Zhang. Introduction of Lewis Acidic and Redox-Active Sites into a Porous Framework for Ammonia Capture with Visual Color Response[J]. Inorg Chem, 2015, 54 :3456-3461.
[51] Y. Chen, L. Li, J. Li, K. Ouyang, J. Yang. Ammonia capture and flexible transformation of M-2(INA) (M = Cu, Co, Ni, Cd) series materials[J]. Journal of hazardous materials, 2016, 306 : 340-347.
[52] F.T.U. Kohler, S. Popp, H. Klefer, I. Eckle, C. Schrage, B. B?hringer, D. Roth, M. Haumann, P. Wasserscheid. Supported ionic liquid phase (SILP) materials for removal of hazardous gas compounds – efficient and irreversible NH3 adsorption[J]. Green Chemistry, 2014, 16: 3560-3568.
[53] K.N. Ruckart, Y. Zhang, W.M. Reichert, G.W. Peterson, T.G. Glover. Sorption of Ammonia in Mesoporous-Silica Ionic Liquid Composites[J]. Industrial & Engineering Chemistry Research ,2016, 55: 12191-12204.
|