[1] 宋治璐.不同结构传热元件传热与阻力特性数值模拟与实验研究[D]. 上海:上海交通大学,2013:5-10.
Song Z L. Numerical simulation and experimental research on heat transfer and resistance characteristics of heat transfer elements[D]. Shanghai:Shanghai Jiao Tong University, 2013.
[2] 张平,宣益民,李强. 界面接触热阻的研究进展[J]. 化工学报, 2012, 63(2):335-349.
Zhang P,Xuan Y M,Li Q. Development on thermal contact resistance[J]. CIESC Journal, 2012, 63(2):335-349.
[3] 刘明言,王红,王燕. 表面工程技术应用于蒸发器的防垢及沸腾传热强化的研究进展[J].化工进展, 2007, 26(3):442-447.
Liu M Y,Wang H,Wang Y. Progress on fouling prevention and enhancement of boiling heat transfer in evaporator with surface engineering technique [J]. CIESC Journal, 2007, 26(3):442-447.
[4] 谭华玉,高春阳,刘立新. 多孔表面的制造方法及其强化沸腾传热效果的比较[J].流体机械, 2006, 34(1):80-85.
Tan H Y,Gao C Y,Liu L X. Manufacturing methods of porous surface and comparison of enhanced boiling[J]. Fluid Machinery, 2006, 34(1):80-85.
[5] 刘贞贞,赵镇南. 机械加工表面多孔管外池核沸腾实验研究[J]. 石油化工设备, 2006, 35(4):21-24.
Liu Z Z,Zhao Z N. Experimental study on nucleate pool boiling heat transfer for mechanically fabricated porous surface tube J]. Petro-Chemical Equipment, 2006, 35(4):21-24.
[6] Vemuri S,Kim K J. Pool boiling of saturated FC-72 on nano-poroussurface [J]. International Communications in Heat and Mass Transfer, 2005, 32(1/2):27-31.
[7] Furberg R. Ehanced boiling heat transfer from a novel nanodendritic micro-porous copper structure [D]. Stockholm: KTH School of Industrial Engineering and Management, 2006: 2.
[8] Yu Y J,Osada H,Inagaki M,et al. Wall thermal conductivity effects on nucleation site interaction during boiling:an experimental study[C] // Gritzo L. .14th International Heat Transfer Conference. Washington D.C.:ASME Heat Transfer, 2010:135-160.
[9] 陈宏霞,马福民,黄林滨. 金属丝网超亲/疏水性强化气液相界面运动[J]. 化工学报, 2016, 67(6):2318-2324.
Chen H X,Ma F M,Huang L B. Super-wettability meshes enhance movement of gas-liquid interface[J] . CIESC Journal, 2016, 67(6):2318-2324.
[10] Zhang B J,Kim K J. Nucleate pool boiling heat transfer augmentation on hydrophobic self-assembly mono-layered alumina nano-porous surfaces[J]. International Journal of Heat and Mass Transfer.2014, 73(9):551-561.
[11] 郑晓欢,纪献兵,王野,等. 超亲/疏水性表面池沸腾传热研究[J]. 化工进展, 2016, 35(12):3793-3798.
Zheng X H,Ji X B,Wang Y,et al. Pool boiling heat transfer on superhydrophilic and superhydrophobic surfaces[J]. CIESC Journal, 2016, 35(12):3793-3798.
[12] Xu Jia,Yang MingJie,Xu JinLiang,et al. Vertically oriented TiO2 nanotube arrays with different anodization times for enhanced boiling heat transfer[J]. SCIENCE CHINA echnological Sciences, 2012, 55(8):2184-2190.
[13] 陈粤,莫冬传,赵洪彬,等. 二氧化钛纳米管界面沸腾特性[J].工程热物理学报, 2009, 30(1):638-640.
Chen E,Mo D C,Zhao B B,et al. Pool bolling performance at Tio2 nanotube interface[J] . Journal of Engineering Thermophysics, 2009, 30(1):638-640.
[14] 邓 鹏,陶金亮,魏 峰,等. 纳米管阵列表面池沸腾强化传热实验[J]. 化工进展, 2012, 31(10):2172-2175.
Deng P,Tao J L,Wei F,et al. Experimental study on enhanced boiling heat transfer on nanotube arrays surface[J].CIESC Journal, 2012, 31(10):2172-2175.
[15] SitaR A,Golobic I. Heat transfer enhancement of self-rewetting aqueous n-butanol solutions boiling in microchannels [J]. International Journal of Heat & Mass Transfer, 2015, 81(2):198-206.
[16] Sahu R P,Sinha-ray S,Sinha-ray S,et al. Pool boiling of Novec 7300 and self-rewetting fluids on electrically-assisted supersonically solution-blown, copper-plated nanofibers[J]. International Journal of Heat & Mass Transfer, 2016, 95(4):83-93.
[17] Francescantonio n D,Savino R,Abe Y. New alcohol solutions for heat pipes: Marangoni effect and heat transfer enhancement[J]. International Journal of Heat & Mass Transfer, 2008, 51(25/26):6199-6207.
[18] Hetsroni G,Mosyak a,Rozenblit r,et al. Natural convection boiling of water and surfactant solutions having negligible environmental impact in vertical confined space[J].Int. J. Multiphase Flow, 2009, 35(1):20-33.
[19] Inoue T,Teruya y,Monde M.Enhancement of pool boiling heat transfer in water and ethanol/water mixtures with surface-active agent[J]. Int. J. Heat Mass Transfer, 2004, 47(25): 5555-5563.
[20] Jeong Y H,Chang W J,Chang S H.Wettability of heated surfaces under pool boiling using surfactant solutions and nano-fluids[J]. Int. J. Heat Mass Transfer, 2008, 51(11/12):3025-3031.
[21] Yang Y M,Lin C Y,Liu M H,et al. Lower limit of the possible nucleate pool-boiling enhancement by surfactant addition to water[J]. Journal of Enhanced Heat Transfer, 2002, 9(3/4):153-160.
[22] 王晔春,彭晓峰,郭烈锦. 表面活性剂强化双组分混合工质沸腾换热实验研究[J].工程热物理学报, 2008, 29(10):1708-1711.
Wang Y C,Peng X F,Guo L J. Pool bolling heat transfer enhancement in binary mixtures by surfactant additives[J]. Journal of Enhanced Heat Transfer, 2008, 29(10):1708-1711.
[23] Bonilla C.F.,Perry C.W.. Heat transmission to boiling binary liquid mixtures[J]. Trans.AIChE, 1941(37):685–705.
[24] Morovati M.,Bindra H.,EsakI S.,et al. Enhancement of pool boiling and critical heat flux in self-rewetting fluids at above atmospheric pressures[C]//ASME. Proceedings of the ASME/JSME 2011 Eighth Thermal Engineering Joint Conference 2011, Hawaii:American Society of Mechanical Engineers, 2011:44593.
[25] Shoji M.. Boiling Heat Transfer of Butanol Aqueous Solution [J] .Asme International Conference on Nanochannels, 2013:649-654.
[26] Zhou L, Li Y, Wei l, et al. Multi-jet flows and bubble emission during subcooled nucleate boiling of aqueous n-butanol solution on thin wire[J]. Experimental Thermal & Fluid Science, 2014, 58(10):1-8.
[27] Anze sitAR,Iztok GOLOBIC. Heat transfer enhancement of self-rewetting aqueous n-butanol solutions boiling in microchannels[J]. International Journal of Heat and Mass Transfer, 2015(81):198–206.
[28] 胡艳鑫. 自湿润流体流动传热机理及高效振荡热管特性研究[D].广东:华南理工大学, 2015:21-28.
Hu Y X. Research on flow and heat transfer mechanism of self-rewetting fluid and characteristics of efficient oscillating heat pipe[D]. Guangdong: South China University Of Technology, 2015:21-28.
[29] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8):988-994.
[30] O′hanley H,Coyle C,Buongiorno J,et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux[J]. Applied Physics Letter, 2013, 103(2):024102-024192-5.
|