[1] 彭支乾. 铋的性能、用途及市场简述[J]. 中国钨业, 1993(1):13-16.
PENG Zhiqian. A brief description of the properties, application and market of bismuth[J]. China Tungsten Industry, 1993(1): 13-16.
[2] Bagwasi S, Tian B, Zhang J, et al. Synthesis, characterization and application of bismuth and boron Co-doped TiO2: a visible light active photocatalyst[J]. Chemical Engineering Journal, 2013, 217: 108-118.
[3] Fernandes K G, de Moraes M, Neto J A G, et al. Evaluation and application of bismuth as an internal standard for the determination of lead in wines by simultaneous electrothermal atomic absorption spectrometry[J]. Analyst, 2002, 127(1): 157-162.
[4] CHAUS A S. Application of bismuth for solidification structure refinement and properties enhancement in as-cast high-speed steels[J]. ISIJ international, 2005, 45(9): 1297-1306.
[5] Cesarino I, Gouveia‐Caridade C, Pauliukait? R, et al. Characterization and Application of Bismuth‐Film Modified Graphite‐Polyurethane Composite Electrodes[J]. Electroanalysis, 2010, 22(13): 1437-1445.
[6] 汪立果. 铋冶金[M] . 北京: 冶金工业出版社, 1986.
WANG Liguo. Bismuth Metallurgy[M] . Beijing: Metallurgical Industry Press,1986.
[7] Chen Y, Liao T, Li G, et al. Recovery of bismuth and arsenic from copper smelter flue dusts after copper and zinc extraction[J]. Minerals Engineering, 2012, 39: 23-28.
[8] Kim D, Wang S. Bismuth recovery from hydrochloric acid solution[J]. Canadian Metallurgical Quarterly, 2008, 47(3): 317-326.
[9] Ficeriová J, Balá? P, Villachica C L. Thiosulfate leaching of silver, gold and bismuth from a complex sulfide concentrates[J]. Hydrometallurgy, 2005, 77(1-2): 35-39.
[10] Castrillejo Y, Haarberg G M, Palmero S, et al. Chemical and electrochemical behaviour of BiCl3 in a PbCl2+ KCl equimolar mixture at 475° C[J]. Journal of Electroanalytical Chemistry, 1994, 373(1-2): 149-155.
[11] Yang J G, He D W, Tang C B, et al. Thermodynamics calculation and experimental study on separation of bismuth from a bismuth glance concentrate through a low-temperature molten salt smelting process[J]. Metallurgical and materials Transactions B, 2011, 42(4): 730-737.
[12] Ebe H, Ueda M, Ohtsuka T. Electrodeposition of Sb, Bi, Te, and their alloys in AlCl3–NaCl–KCl molten salt[J]. Electrochimica Acta, 2007, 53(1): 100-105.
[13] Ueda M, Tsuchiya S, Ohtsuka T. Electrodeposition of Bi-Sb-Te Alloys by Pulse Electrolysis in AlCl3-NaCl-KCl Molten Salt[J]. Electrochemistry, 2009, 77(8): 659-662.
[14] Hua Z, Wang J, Wang L, et al. Selective extraction of rare earth elements from NdFeB scrap by molten chlorides[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(11): 2536-2543.
[15] Hua Z S, Wang L, Wang J, et al. Extraction of rare earth elements from NdFeB scrap by AlF3–NaF melts[J]. Materials Science and Technology, 2015, 31(8): 1007-1010.
[16] Hua Z, Liu H, Wang J, et al. Electrochemical Behavior of Neodymium and Formation of Mg–Nd Alloys in Molten Chlorides[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8089-8096.
[17] Hur J M, Jeong S M, Lee H. Underpotential deposition of Li in a molten LiCl–Li2O electrolyte for the electrochemical reduction of U from uranium oxides[J]. Electrochemistry Communications, 2010, 12(5): 706-709.
[18] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications [M]. Beijing: Chemical Industry Press, 2005, 225-227.
[19] Ramaley L, Krause M S. Theory of Square Wave Voltammetry [J]. Anal. Chem., 1969, 41(11): 1362-1365.
[20] HAN W, JI N, LI M, et al. Electrochemical Formation of Al-Tb Alloys from Tb4O7 Fluorinated by AlF3 in NaCl-KCl Melts[J]. Acta Physico-Chimica Sinica, 2016, 32(10): 2538-2544.
[21] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications [M]. Beijing: Chemical Industry Press, 2005, 65-175.
[22] 陈丽军, 张密林, 韩伟,等. Mn(Ⅱ)在LiCl-KCl-MgCl2-MnCl2熔盐体系中的电化学行为[J]. 高等学校化学学报, 2012, 33(2):327-330.
CHEN Lijun, ZHANG Milin, HAN Wei, et al. Electrochemical Behavior of Mn(Ⅱ) in the Melt LiCl-KCl-MgCl2-MnCl2[J] . Chemical Journal of Chinese Universities, 2012, 33(2):327-330.
|