欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2019, Vol. 19 ›› Issue (3): 483-491.DOI: 10.12034/j.issn.1009-606X.218245

• 综述 • 上一篇    下一篇

磷酸钒锂正极材料掺杂改性研究进展

董虎林1, 包海萍1, 汪 浩2*, 彭建洪1*   

  1. 1. 青海民族大学物理与电子信息工程学院,青海 西宁 810007 2. 北京工业大学材料科学与工程学院,北京 100124
  • 收稿日期:2018-07-13 修回日期:2018-10-14 出版日期:2019-06-22 发布日期:2019-06-20
  • 通讯作者: 董虎林 donghulin1203@163.com

Research progress in doping of lithium vanadium phosphate cathode materials

Hulin DONG1, Haiping BAO1, Hao WANG2*, Jianhong PENG1*   

  1. 1. College of Physics and Electronic Information Engineering, Qinghai University of Nationalities, Xining, Qinghai 810007, China 2. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2018-07-13 Revised:2018-10-14 Online:2019-06-22 Published:2019-06-20

摘要: 面对日趋严重的能源问题和环境问题,迫切需要寻找新的清洁能源以解决传统清洁能源(太阳能、潮汐能、风能等)转换效率低、能量储存难度大等问题。锂离子电池因绿色环保、安全性能好、放电容量高、循环寿命长、便于携带等优点受到研究者青睐,其中Li3V2(PO4)3 (LVP)锂离子电池因其较高的放电比容量和电压平台、良好的安全性能、便携性、环保型、低成本等优点成为备受关注的锂离子电池正极材料之一。由于LVP自身结构的缺陷,导致其离子导电率和电子导电率较低,不利于发挥其理论容量高、倍率性能优等特点。目前多数关于锂离子电池正极材料LVP的改性研究中,离子掺杂是最有效的方法之一。离子掺杂一方面可以优化材料的晶格参数,提高充放电过程中晶体结构的稳定性,改善其循环寿命;另一方面有助于增大晶格间隙,扩大离子的扩散通道,从而有利于提高离子扩散系数,改善电极材料的离子导电率。在目前的研究中,LVP的离子掺杂方法主要包括锂位掺杂、钒位掺杂、阴离子掺杂和多位掺杂四种,其中钒位掺杂包括钒位单掺杂和共掺杂。本工作阐述了近年来LVP离子掺杂改性的研究进展,并对该材料未来的发展趋势进行了展望。

关键词: 磷酸钒锂, 锂离子电池, 正极材料, 掺杂

Abstract: A new clean-energy is urgently needed to replace the traditional clean-energy (such as solar energy, tidal energy, and wind energy) with the problem of low conversion efficiency and more difficult energy storage in the face of the rigorous energy and environmental problems. The lithium ion battery is favored by researchers because of its green environmental protection, good safety performance, high discharge capacity, long cycle life and easy to carry, especially Li3V2(PO4)3 (LVP) lithium-ion battery. The LVP is one of the cathode materials of Li-ion batteries attracted most attention due to its higher discharge capacity, higher voltage platform, good safety performance, portability, environmental protection and low cost. However, the instinct drawbacks of monoclinic structure lead to low ionic conductivity and electronic conductivity, which seriously degrade the electrochemical properties of the materials. At present, among the various modified methods, ions doping is one of the most effective ways. The ions doping can optimize the lattice parameters of LVP, enhance the stability of the crystal structure in the process of charging and discharging, and improve the cycle life. In addition, it can also increase the ionic diffusion coefficient and perfect the ionic conductivity via enlarging interstitial void and diffusion path of ions. In present studies, the ions doping of LVP mainly includes doping in Li sites, doping in V sites, anion doping and multibit doping. Meanwhile, the doping in V sites of LVP also includes single doping and co-doping. In this work research processes of ions doping for enhancing the electrochemical performance of Li3V2(PO4)3 were summarized and the development prospect of this material was also reviewed.

Key words: lithium vanadium phosphate, lithium ion battery, cathode material, doping