[1] Kanno R, Hata T, Kawamoto Y, et al. Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system[J]. Solid State Ionics, 2000, 130(1–2):97-104.
[2] Sun C, Liu J, Gong Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33:363-386.
[3] Zheng N, Bu X, Feng P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J]. Nature, 2003, 35(7):428-32.
[4] B A Boukamp, R A Huggins. Mat. Res. Fast ionic conductivity in lithium nitride[J]. Materials Research Bulletin, 1978, 13(1):23-32.
[5] Yu X, Bates J B, Jellison G E, et al. A stable thin film lithium electrolyte: lithium phosphorus oxynitride[J]. Journal of the electrochemical society, 1997, 144(2):524-532.
[6] Li Y, Xu H, Chiem P H, et al. A stable perovskite electrolyte in moist air for Li-ion batteries[J]. Angewandte Chemie International Edition, 2018, 57(28):1433-7851.
[7] Birke P, Scharner S, Huggins R A et al. Electrolytic Stability Limit and Rapid Lithium Insertion in the Fast Ion Conducting Li0.29La0.57TiO3 Perovskite Type Compound[J]. Journal of The Electrochemical Society, 1997, 144: L167–L169.
[8] Knauth P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180(14):911-916.
[9] Oguni M, Inaguma Y, Itoh M, et al. Calorimetric and electrical studies on the positional disorder of lithium ions in lithium lanthanum titanate[J]. Solid State Communications, 1994, 91(8):627-630.
[10] Cussen E J. The Structure of Lithium Garnets: Cation Disorder and Clustering in a New Family of Fast Li+, Conductors[J]. Cheminform, 2006, 37(15):412-413.
[11] Mo Y, Ong S P, Ceger G. First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material[J]. Chemistry of Materials, 2012, 24(1):15–17.
[12] Wan H, Peng G, Yao X, et al. Cu2 ZnSnS4 /graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode[J]. Energy Storage Materials, 2016, 4:59-65.
[13] Tetsuya A, Akihiro S, Satoru O, et al. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4V Class Bulk-Type All-Solid-State Batteries[J]. Advanced Materials, 2018, 1803075
[14] Yao X, Liu D, Wang C, et al. High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life[J]. Nano Letter. 2016, 16, 7148-7154.
[15] Ong S P, Mo Y, Richards W D, et al. Phase stability, electrochemical stability and ionic conductivity of the Li[subscript 10±1]MP[subscript 2]X[subscript 12] (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors[J]. Energy & Environmental Science, 2012, 6(1):148-156.
[16] Yoon K, Kim J J, Seong W M, et al. Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery[J]. Scientific Reports, 2018, 8(1):8066.
[17] Muramatsu H, Hayashi A, Ohtomo T, et al. Structural change of Li2S–P2S5, sulfide solid electrolytes in the atmosphere[J]. Solid State Ionics, 2011, 182(1):116-119.
[18] Inaguma Y, Chen L, Itoh M, et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86(10):689-693.
[19] Culver S P, Koerver R, Krauskopf T, et al. Designing ionic conductors: the interplay between structural phenomena and interfaces in thiophosphate-based solid-state batteries[J]. Chemistry of Materials, 2018, 30: 4179-4192.
[20] Ohta N, Takada K, Zhang L, et al. Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification ?[J]. Advanced Materials, 2006, 18(17):2226-2229.
[21] Takada K. Interfacial nanoarchitectonics for solid-state lithium batteries[J]. Langmuir, 2013, 29(24):7538-7541.
[22] Xu X, Takada K, Watanabe K, et al. Recent Progress in Interfacial Nanoarchitectonics in Solid-State Batterie[J]. Chemistry of Materials, 2011, 23: 3798–3804.
[23] Woo J H, Trecey J E, Cavanagh A S, et al. Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries[J]. Journal of the Electrochemical Society, 2012, 159(7):A1120-A1124.
[24] Jin Y, Mcginn P J. Li7La3Zr2O12, electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5, solid-state battery[J]. Journal of Power Sources, 2013, 239(10):326-331.
[25] Li Y, Chen X, Dolocan A, et al. Garnet Electrolyte with an Ultralow Interfacial Resistancefor Li-Metal Batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455.
[26] Shao Y, Wang H, Gong Z, et al. Drawing a Soft Interface: An Effective InterfacialModification Strategy for Garnet-Type Solid-State Li Batteries[J]. ACS Energy Letters, 2018, 3(6): 1212-1218.
[27] Tai C L, Roddatos V, Vinod C C, et al. Li7La3Zr2O12 Interface Modification for Li-dendrite Prevention[J]. ACS Applied Materials & Interfaces, 2016, 8(16):10617–10626.
[28] Kotobuki M, Munakata H, Kanamura K, et al. Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode[J]. Journal of the Electrochemical Society, 2010, 157(10):A1076-A1079.
[29] Wakayma H, Yonekura H, Kawai Y. Three-Dimensional Bicontinuous Nanocomposite from a Self-Assembled Block Copolymer for a High-Capacity All-Solid-State Lithium Battery Cathode[J]. Chemistry of Materials, 2016, 28: 4453–4459.
[30] Ohta S, Komagata S, Seki J, et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3, solid electrolytes fabricated by screen-printing[J]. Journal of Power Sources, 2013, 238(28): 53-56.
[31] Kato T, Hamanaka T, Yamamoto K, et al. In-situ, Li7La3Zr2O12 /LiCoO2, interface modification for advanced all-solid-state battery[J]. Journal of Power Sources, 2014, 260(16): 292-298.
[32] Jan V D B, Afyon S, Rupp J L M. Interface‐Engineered All Solid State Li Ion Batteries Based on Garnet Type Fast Li+ Conductors[J]. Advanced Energy Materials, 2016, 6(19): 1600736.
[33] Wang C, Zhang L, Xie H, et al. Mixed Ionic-Electronic Conductor Enabled Effective Cathode-Electrolyte Interface in All Solid State Batteries[J]. Nano Energy, 2018, 50.
[34] Dong T, Zhang J, Xu G, et al. A multifunctional polymer electrolyte enables ultra-long cycle-lifein a high-voltage lithium metal battery[J]. Energy & Environmental Science, 2018, 11(5): 1197-1203.
[35] Wei Z, Chen S, Wang J, et al. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode[J]. Journal of Power Sources, 2018, 394: 57-66.
[36] Wang L P, Zhang X D, Wang T S, el. Ameliorating the Interfacial Problems of Cathode and Solid‐State Electrolytes by Interface Modification of Functional Polymers[J]. Advanced Energy Materials. 2018, 8, 1801528
[37] Liu Y, Li C, Li B, et al. Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid‐State Li Batteries[J]. Advanced Energy Materials, 2018, 8(16): 1702374.
[38] Palacin M R. Recent advances in rechargeable battery materials: Achemist's perspective[J]. Chemical Society Reviews, 2009, 38(9): 2565-2575.
[39] Patil A, Patil V, Wook S D, et al. Issue and challenges facing rechargeable thin film lithium batteries[J]. Materials Research Bulletin, 2008, 43(8–9): 1913-1942.
[40] 李杨, 丁飞, 桑林, 等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5(5): 615-626.
Li Y, Ding F, Sang L, et al. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 615-626.
[41] 张波, 崔光磊, 刘志宏,等. 无机固态锂电池专利分析[J]. 储能科学与技术, 2017, 6(2):307-315.
Zhang B, Cui G, Liu Z H, et al. Patentmetrics on lithium-ion battery based on inorganic solid electrolyte[J]. Energy Storage Science and Technology, 2017, 6(2): 307-315.
[42] Jeffrey L, Yongming S, David G.M, et al. A Dual-Crosslinking Design for Resilient Lithium-Ion Conductors[J]. Advanced Materials. 2018, 30, 1804142.
|