[1] Senthilnathan N, Raja Annamalai A, Venkatachalam G. Sintering of tungsten and tungsten heavy alloys of W–Ni–Fe and W–Ni–Cu: a review [J]. Trans. Indian. Inst. Met. 2016, 70 (5): 1161-1176.
[2] Leal-Ayala D R, Allwood J M, Petavratzi E, et al. Mapping the global flow of tungsten to identify key material efficiency and supply security opportunities [J]. Resour. Conserv. Recy. 2015, 103: 19-28.
[3] Hayes S M, McCullough E A. Critical minerals: A review of elemental trends in comprehensive criticality studies [J]. 2018, In Press.
[4] Ning P G, Cao H B, Zhang Y. Selective extraction and deep removal of tungsten from sodium molybdate solution by primary amine N1923 [J]. Sep. Purif. Technol. 2009, 70 (1): 27-33.
[5] Wen J W, Liu F, Cao H B, et al. Insights into the extraction of various vanadium species by primary amine [J]. Hydrometallurgy. 2017, 173: 57-62.
[6] Hastings J J, Howarth O W. A 183W, 1H and 17O nuclear magnetic resonance study of aqueous isopolytungstates [J]. J. Chem. Soc. Dalton. 1992, (2): 209-215.
[7] Redkin A F, Bondarenko G V. Raman spectra of tungsten-bearing solutions [J]. J. Solution. Chem. 2010, 39 (10): 1549-1561.
[8] Zhan J L, Hu J T, Zhang L F. Raman studies on species in single and mixed solutions of molybdate and vanadate [J]. Chin. J. Chem. Phys. 2016, 29 (4): 425-429.
[9] Aureliano M, Ohlin C A, Vieira M O, et al. Characterization of decavanadate and decaniobate solutions by Raman spectroscopy [J]. Dalton T. 2016, 45 (17): 7391-7399.
[10] Nguyen T H, Lee M S. A review on the separation of molybdenum, tungsten, and vanadium from leach liquors of diverse resources by solvent extraction [J]. Geosystem Eng. 2016, 19 (5): 247-259.
[11] Truebenbach C S, Houalla M, Hercules D M. Characterization of isopoly metal oxyanions using electrospray time-of-flight mass spectrometry [J]. J. Mass Spectrom. 2000, 35: 1121-1127.
[12] Walanda D K, Burns R C, Lawrance G A, et al. Electrospray mass spectrometry of aqueous solutions of isopolyoxotungstates [J]. J. Clust. Sci. 2000, 11: 5-28.
[13] Long D-L, Streb C, Song Y-F, et al. Unravelling the complexities of polyoxometalates in solution using mass spectrometry: protonation versus heteroatom inclusion [J]. J. Am. Chem. Soc. 2008, 130: 1830-1832.
[14] Jia Q D, Zhang Y, Cao J. Characterization of polyoxometalates by electrospray ionization mass spectrometry [J]. Sci. China. Chem. 2015, 58 (7): 1206-1210.
[15] Deery M J, Howarth O W, Jennings K R. Application of electrospray ionisation mass spectrometry to the study of dilute aqueous oligomeric anions and their reactions [J]. J. Chem. Soc. Dalton. 1997, (24): 4783-4788.
[16] Themelis D G, Kika F S, Economou A. Flow injection direct spectrophotometric assay for the speciation of trace chromium(III) and chromium(VI) using chromotropic acid as chromogenic reagent [J]. Talanta. 2006, 69 (3): 615-620.
[17] Jade Mohajerin T, Helz G R, White C D, et al. Tungsten speciation in sulfidic waters: determination of thiotungstate formation constants and modeling their distribution in natural waters [J]. Geochim Cosmochim Ac. 2014, 144: 157-172.
[18] Bednar A J, Mirecki J E, Inouye L S, et al. The determination of tungsten, molybdenum, and phosphorus oxyanions by high performance liquid chromatography inductively coupled plasma mass spectrometery [J]. Talanta 2007, 72 (5): 1828-1832.
[19] Scancar J, Berlinger B, Thomassen Y, et al. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS [J]. Talanta. 2015, 142: 164-169.
[20] Schramel P, Wendler I, Angerer J. The determination of metals (antimony, bismuth, lead, cadmium, mercury, palladium, platinum, tellurium, thallium, tin and tungsten) in urine samples by inductively coupled plasma-mass spectrometry [J]. Int. Arch. Occup. Environ. Health. 1997, 69: 219-223.
[21] Fedotov M A, Maksimovskaya R I. NMR structural aspects of the chemistry of V, Mo, W polyoxometalates [J]. J. Struct. Chem+. 2006, 47(5): 952-978.
[22] Smith B J, Patrick V A. Quantitative Determination of Sodium Metatungstate Speciation by 183W NMR Spectroscopy [J]. Aust. J. Chem. 2000, 53: 965-970.
[23] Nekovar P, Schrotterova D. Extraction of V(V), Mo(VI) and W(VI) polynuclear species by primene JMT [J]. Chem. Eng. J. 2000, 79 (3): 229-233.
[24] Zhang X Y, Ning P G, Cao H B, et al. Measurement and modeling for molybdenum extraction from the Na2MoO4–H2SO4–H2O system by primary amine N1923 [J]. Ind & Eng Chem Res. 2016, 55 (5): 1427-1438.
[25] Xu W F, Ning P G, Cao H B, et al. Thermodynamic model for tungstic acid extraction from sodium tungstate in sulfuric acid medium by primary amine N1923 diluted in toluene [J]. Hydrometallurgy. 2014, 147: 170-177.
[26] Robards K, McKelvie I D, Benson R L, et al. Determination of carbon, phosphorus, nitrogen and silicon species in waters [J]. Anal. Chim. Acta. 1994, 287 (3): 147-190.
[27] Nagypal I, Beck M T. Principles of concentration distributions in multicomponent equilibrium systems [J]. Coordin. Chem. Rev. 1982, 43: 233-250.
[28] Kiss T, Enyedy é A, Jakusch T. Development of the application of speciation in chemistry [J]. Coordin. Chem. Rev. 2017, 352: 401–423.
[29] Schwarzenbach G, Anderegg G. Die verwendung der quecksilberelektrode zur bestimmung der atabilitatskonstanten von metallkomplexen [J]. Helv. Chim. Acta. 1957, 40 (6): 1773-1792.
[30] Noroozifar M, Khorasani-Motlagh M, Specific extraction of chromium as tetrabutylammonium-chromate and spectrophotometric determination by diphenylcarbazide: speciation of chromium in effluent streams [J]. Anal. Sci. 2003, 19: 705-708.
[31] Pobozy E, Wojasinska E, Trojanowicz M. Ion chromatographic speciation of chromium with diphenylcarbazide-based spectrophotometric detection [J]. J. Chromatogr. A. 1996, 736: 141-150.
[32] Gift A D, Stewart M S, Bokashanga P K. Experimental determination of pKa values by use of NMR chemical shifts, revisited [J]. J. Chem. Educ. 2012, 89: 1458?1460.
[33] Peters S J, Stevenson C D. The complexation of the Na+ by 18-crown-6 studied via nuclear magnetic resonance [J]. J. Chem. Educ. 2004, 81 (5): 715-717.
[34] Dougherty W J, Smernik R J, Chittleborough D J. Application of spin counting to the solid-state P31 NMR analysis of pasture soils with varying phosphorus content [J]. Soil Sci. Soc. Am. J. 2005, 69 (6): 2058-2070.
[35] Li W, Joshi S R, Hou G, et al. Characterizing phosphorus speciation of chesapeake bay sediments using chemical extraction, P31 NMR, and X-ray absorption fine structure spectroscopy [J]. Environ. Sci. Technol. 2015, 49 (1): 203-211.
[36] Varaprath S, Stutts D H, Kozersk G E. A primer on the analytical aspects of silicones at trace levels-challenges and artifacts – A review [J]. Silicon Chem. 2006, 3: 79–102.
[37] Truong H T, Nguyen T H, Lee M S. Separation of molybdenum(VI), rhenium(VII), tungsten(VI), and vanadium(V) by solvent extraction [J]. Hydrometallurgy. 2017, 171: 298-305.
[38] Zhao H, Liu H J, Qu J H. Aluminum speciation of coagulants with low concentration: Analysis by electrospray ionization mass spectrometry [J]. Colloid. Surface. A. 2011, 379 (1-3): 43-50.
[39] Wen J W, Ning P G, Cao H B, et al. Recovery of high-purity vanadium from aqueous solutions by reusable primary amines N1923 associated with semi-quantitative understanding of vanadium species [J]. ACS Sustainable. Chem. Eng. 2018, 6 (6): 7619-7626.
[40] Pyrzynska K, Wierzbicki T. Determination of vanadium species in environmental samples [J]. Talanta. 2004, 64 (4): 823-829.
[41] Rudolph W W. Raman-spectroscopic measurements of the first dissociation constant of aqueous phosphoric acid solution from 5 to 301°C [J]. J. Solution. Chem. 2012, 41 (4): 630-645.
[42] Bergwerff J A, Visser T, Weckhuysen B M. On the interaction between Co- and Mo-complexes in impregnation solutions used for the preparation of Al2O3-supported HDS catalysts: A combined Raman/UV-vis-NIR spectroscopy study [J]. Catal. Today. 2008, 130 (1): 117-125.
[43] Sipos P, May P M, Hefter G. Quantitative determination of an aluminate dimer in concentrated alkaline aluminate solutions by Raman spectroscopy [J]. Dalton T. 2006, (2): 368-375.
[44] Chainet F, Lienemann C-P, Courtiade M, et al. Silicon speciation by hyphenated techniques for environmental, biological and industrial issues: A review [J]. J. Anal. Atom. Spectrom. 2011, 26 (1): 30-51.
[45] Boussemart M, Van Den Berg C M G, Ghaddaf M. The determination of thechromium speciation in sea-water using catalytic cathodic stripping voltammetry [J]. Anal. Chim. Acta. 1992, 262 (1): 103-115.
[46] 张伟光,赵中伟. 新型硫化剂五硫化二磷对钨和钼的硫化热力学[J]. 中国有色金属学报, 2014, 24 (5):1375-1382.
Zhang W G, Zhao Z W. Thermodynamics of W and Mo sulfidation by using new sulfiding agent P2S5 [J]. The Chinese Journal of Nonferrous Metals, 2014, 24 (5):1375-1382.
[47] Zhao Z W, Cao C F, Chen X Y. Separation of macro amounts of tungsten and molybdenum by precipitation with ferrous salt [J]. T. Nonferr. Metal. Soc. 2011, 21 (12): 2758-2763.
[48] 肖连生. 中国钨提取冶金技术的进步与展望[J]. 有色金属科学与工程, 2013, 4 (5), 6-10.
Xiao L S. Progress and prospect of tungsten extraction metallurgy in China [J]. Nonferrous Metals Science and Engineering, 2013, 4 (5), 6-10.
[49] 廖春华. 离子交换法分离钨钼的新工艺研究[D]. 长沙:中南大学,2012:64-69.
Liao C H. The new technology for separation of Tungsten and Molybdenum by Ion Exchange [D]. Changsha: Central South University, 2012: 64-69.
[50] 杨跷, 肖连生. 特种树脂吸附沉淀法从钨酸铵溶液中分离钼的研究[J]. 有色金属(冶金部分), 2010, 4: 37-40.
Yang Q, Xiao L S. Study on separation molybdenum with special resin adsorption precipitation method from ammonium tungstate solution [J]. Non-ferrous Metals (smelting part), 2010, (4): 37-40.
[51] Zhao Z W, Zhang J L, Chen X Y, et al. Separation of tungsten and molybdenum using macroporous resin: equilibrium adsorption for single and binary systems [J]. Hydrometallurgy. 2013, 140: 120-127.
[52] Zhang X Y, Ning P G, Xu W F, et al. Modeling for tungstic precipitation and extraction based on pitzer equation [J]. Sci. China. Chem. 2015, 59 (4): 497-504.
[53] 张勇, 钨钼分离技术的最新研究进展. 湖南有色金属, 2016, 32 (6): 21-25.
Zhang Y. Latest research development of tungsten and molybdenum separation technology [J]. Hunan Nonferrous Metals, 2016, 32 (6): 21-25.
|