[1] 周怀阳, 彭晓彤. 天然气水合物勘探开发技术研究进展[J]. 地质与勘探, 2002,38(1):70-73.
Zhou H Y, Peng X T. Research progress of exploration and development technology of natural gas hydrate [J]. Geology and Exploration, 2002,38(1):70-73.
[2] 周守为, 陈伟, 李清平, 等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017,29(04):1-8.
Zhou S W, Chen W, Li Q P, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area [J]. China Offshore Oil and Gas, 2017, 29 (4) :1-8.
[3] 王国荣, 钟林, 周守为, 等. 天然气水合物射流破碎工具及其配套工艺技术[J]. 天然气工业, 2017,37(12):68-74.
Wang G R, Zhong L, Zhou S W, et al. Jet breaking tools for natural gas hydrate exploitation and their support technologies [J]. Natural Gas Industry, 2017, 37 (12) :68-74.
[4] 周守为, 陈伟, 李清平. 深水浅层天然气水合物固态流化绿色开采技术[J]. 中国海上油气, 2014,26(05):1-7.
Zhou S W, Chen W, Li Q P. The green solid fluidization development principle of natural gas hydrate stored in shallow layers of deep water [J]. China Offshore Oil and Gas, 2014, 26(5): 1-7.
[5] 黄军, 安连锁. 溢流口结构对石膏旋流器分离性能的影响[J]. 动力工程学报, 2011,31(2):137-141.
Huang J, An L S. Influence of the overflow port's structure on separation performance of gypsum cyclones [J]. Journal of Chinese Society of Power Engineering, 2011,31(2):137-141.
[6] 赵立新, 王羕, 罗雅君, 等. 溢流管结构对三相分离器分离效率的影响[J]. 流体机械, 2014,42(03):6-9.
Zhao L X, Wang Y, Luo Y J, et al. Effect of overflow tube structure on the separation efficiency of three-phase hydrocyclone [J]. Fluid Machinery, 2014,42(3):6-9.
[7] 许妍霞. 水力旋流分离过程数值模拟与分析[D]. 华东理工大学, 2012:19-33.
Xu Y X. Numerical simulation and analysis of the separation process in the hydrocyclone [D]. Shanghai: East China University of Science and Technology, 2012: 19-33.
[8] 褚良银. 水力旋流器[M]. 化学工业出版社, 1998:73-75.
Chu L Y. Hydrocyclone [M]. Beijing: Chemical Industry Press, 1998:73-75.
[9] 许敏. 水力旋流器内部流场数值模拟及分离性能分析[J]. 石油矿场机械, 2012,41(03):21-24.
Xu M. Numerical simulation of inner flow field in hydrocyclone and performance analysis [J]. Oil Field Equipment, 2012,41(3):21-24.
[10] Hwang K J, Chou S P. Designing Vortex Finder Structure for Improving the Particle Separation Efficiency of a Hydrocyclone[J]. Separation & Purification Technology, 2017,172:76-84.
[11] 刘鸿雁, 王亚, 韩天龙, 等. 水力旋流器溢流管结构对微细颗粒分离的影响[J]. 化工学报, 2017,68(5):1921-1931.
Liu H Y, Wang Y, Han T L, et al. Influence of vortex finder configurations on separation of fine particles [J]. Journal of Chemical Industry and Engineering(China), 2017,68(5):1921-1931.
[12] 邱顺佐, 王国荣, 王广申, 等. 旋流分离对天然气水合物除砂提纯的影响[J]. 过程工程学报:2-8.
Qiu S Z, Wang G R, Wang G S, et al. Effects of hydrocyclone separation on purification of natural gas-hydrate slurry and sand remove (in Chinese). Chin. J. Process Eng., DOI: 10.12034/j.issn.1009-606X.218154.
[13] 庞学诗. 水力旋流器技术与应用[M]. 中国石化出版社, 2011:268-272.
Pang X S. Process calculation of hydrocyclone [M]. Beijing: China Petrochemical Press, 2011: 268-272.
[14] 庞学诗. 水力旋流器工艺计算[M]. 中国石化出版社, 1997:56-80.
Pang X S. Process calculation of hydrocyclone [M]. Beijing: China Petrochemical Press, 1997: 56-80.
[15] 伍开松, 代茂林. 海底水合物混合浆体除泥砂水力旋流器[J]. 北京工业大学学报, 2015(7):973-979.
Wu K S, Dai M L. Hydrocyclone for separating silt in gas hydrate mixed slurry on the seabed [J]. Journal of Beijing University of Technology, 2015, 41(7): 973-979.
[16] 霍鹏. 天然气水合物声波在线快速检测及基础物性分析研究[D]. 2017:40-44.
Huo P. Online Detection and Basic Physical Property Analysis of Gas Hydrate-bearing Sediment Cores [D].: Dalian University of Technology, 2017: 40–44.
[17] 崔宝玉. 水力旋流器流场及分离过程的数值试验研究[D]. 东北大学, 2014:9-11.
Cui B Y. Numerical study on flow field and separating process of hydrocyclone [D]. Shenyang: Northeastern University, 2014:9-11.
[18] 许妍霞, 唐波, 宋兴福, 等. 水力旋流器内部流场模拟分析与PIV验证[J]. 华东理工大学学报(自然科学版), 2013,39(01):1-7.
Xu Y X, Tang B, Song X F, et al. Computational Study and PIV Validation of Flow Field in a Hydrocyclone [J]. Journal of EastChina University of Science and Technology (Natural ScienceEdition). 2013, 39(1): 1–7.
|