[1] 刘威威, 高豪, 秦云龙, 等. 基于 CFX 的多腔回转炉中催化剂颗粒加热的数值模拟 [J]. 过程工程学报, 2013, 13(6): 908-914.
[2] 米翠丽, 樊孝华, 魏刚, 等. 热解温度对生物质和煤成焦特性的影响 [J]. 生物质化学工程, 2014, 48(6): 36-42.
[3] 刘国庆, 刘清才, 姚璐, 等. 干熄焦除尘灰与低灰煤混合燃烧特性及动力学 [J]. 过程工程学报, 2015, 15(2): 272-277.
[4] 王维, 卢旭晨, 李佑楚. 循环流化床燃烧器的一维拟流体数值模拟 [J]. 过程工程学报, 2004, 4(5): 385-390.
[5] 侯凤云, 吕清刚, 那永洁, 等. 湿污泥颗粒的流化床干燥实验及模型 [J]. 过程工程学报, 2007, 7(4): 646-651.
[6] Ranz W E, Marshall W R, Jr. Evaporation from Drops, Parts I [J]. Chemical Engineering Progress, 1952, 48(3): 141-146.
[7] Ranz W E, Marshall W R, Jr. Evaporation from Drops, Parts II [J]. Chemical Engineering Progress, 1952, 48(4): 173-180.
[8] Whitaker S. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles [J]. AIChE Journal, 1972, 18(2): 361-371.
[9] Imai T, Murayama T, Ono Y. The estimation of convective heat transfer coefficients between a spherical particle and fluid at lower Reynolds number [J]. ISIJ International, 1995, 35(12): 1438-1443.
[10] Proudman I, Pearson J R A. Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder [J]. Journal of Fluid Mechanics, 1957, 2(3): 237-262.
[11] Acrivos A, Taylor T D. Heat and mass transfer from single spheres in stokes flow [J]. Physics of Fluids, 1962, 5(5): 387-394.
[12] Rimmer P L. Heat transfer from a sphere in a stream of small Reynolds number [J]. Journal of Fluid Mechanics, 1968, 32(1): 1-7.
[13] Choudhury P N, Drake D G. Unsteady heat transfer from a sphere in a low Reynolds number flow [J]. Quarterly Journal of Mechanics and Applied Mathematics, 1971, 24(1): 23-36.
[14] Dennis S C R, Walker J D A, Hudson J D. Heat transfer from a sphere at low Reynolds number [J]. Journal of Fluid Mechanics, 1973, 60(2): 273-283.
[15] Clift,J.R. Grace M.E. Weber, Bubbles, Drops and Particles [M]. Academic Press, New York, 1978.
[16] Kendoush A A. Low Prandtl number heat transfer to fluids flowing past an isothermal spherical particle [J]. International Journal of Heat and Fluid Flow, 1995, 16(4): 291-297.
[17] Feng Z G, Michaelides E E. Unsteady heat transfer from a sphere at small Peclet numbers [J]. Journal of Fluid Engineering, 1996, 118(1): 96-102.
[18] Mansoorzadeh S, Pain C C, Oliveira C R E D, et al. Finite element simulations of incompressible flow past a heated/cooled sphere [J]. International Journal for Numerical Methods in Fluids, 1998, 28(6): 903-915.
[19] Feng Z G, Michaelides E E. A numerical study on the transient heat transfer from a sphere at high Reynolds and Peclet numbers [J]. International Journal of Heat and Mass Transfer, 2000, 43(2): 219-229.
[20] Bagchi P, Ha M Y, Balachandar S. Direct numerical simulation of flow and heat transfer from a sphere in a uniform cross-flow [J]. Journal of Fluids Engineering, 2001, 123(2): 347-358.
[21] Balachandar S, Ha M Y. Unsteady heat transfer from a sphere in a uniform cross-flow [J]. Physics of Fluids, 2001, 13(12): 3714-3728.
[22] Alassar R S, Badr H M. Heat convection from a sphere placed in a fluctuating free stream [J]. AIChE Journal, 2007, 53(7): 1670-1677.
[23] Koizumi H, Umemura Y, Hadno S, et al. Heat transfer performance and the transition to chaos of mixed convection around an isothermally heated sphere placed in a uniform, downwardly directed flow [J]. International Journal of Heat and Mass Transfer, 2010, 53(13-14): 2602-2614.
[24] Krishnan S, Kaman A. Effect of blockage ratio on drag and heat transfer from a centrally located sphere in pipe flow [J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(3): 396-414.
[25] Song D, Gupta R K, Chhabra R P. Effect of blockage on heat transfer from a sphere in power-law fluids [J]. Industrial and Engineering Chemistry Research, 2010, 49(49): 3849-3861.
[26] Song D, Gupta R K, Chhabra R P. Heat transfer to a sphere in tube flow of power-law liquids [J]. International Journal of Heat and Mass Transfer, 2012, 55(7-8): 2110-2121.
[27] Richter A, Nikrityuk P A. Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers [J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 1343-1354.
[28] Gupta A K, Mishra G, Nirmalkar N, et al. Effect of confinement on heat transfer in aqueous nanofluids from a heated sphere [J]. Powder Technology, 2018, 325(1): 576-596.
[29] Hema Sundar Raju B, Nath D, Pati S. Effect of Prandtl number on thermo-fluidic transport characteristics for mixed convection past a sphere [J]. International Communications in Heat and Mass Transfer, 2018, 98(1): 191-199.
[30] Dhole S D, Chhabra R P, Eswaran V. A numerical study on the forced convection heat transfer from an isothermal and isoflux sphere in the steady symmetric flow regime [J]. International Journal of Heat and Mass Transfer, 2006, 49(5-6): 984-994.
[31] Imai T, Mrrayama T, Ono Y. The effect of structure of packed beds on the convective heat transfer coefficient between particle and liquid [J]. ISIJ International, 1994, 34(10): 777-783.
[32] 张楠. 基于EMMS的介尺度传质模型及其在循环流化床锅炉燃烧模拟中的应用.[D]. 2010.
[33] Wu M H, Wen C Y, Yen R H, et al. Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number [J]. Journal of Fluid Mechanics, 2004, 515(1): 233-260.
|