[1] Zalba B, José M a Mar??n, Cabeza L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3):251-283.
[2] Zhou D, Zhao C Y, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications[J]. Applied Energy, 2012, 92(4):593-605.
[3] Tiwari A, Mishra Y K, Kobayashi H, et al. 9. Phase Change Materials as Smart Nanomaterials for Thermal Energy Storage in Buildings[M]// Intelligent Nanomaterials. John Wiley & Sons, Inc. 2017.
[4] 张亮, 晏华, 余荣升,等. 相变材料的研究进展及其在建筑领域的应用综述[J]. 材料开发与应用, 2010, 25(1):69-73.
Zhang L, Yan H, Yu R S, et al. Research progress of phase change materials and their application in the field of architecture[J]. Development and Application of Materials, 2010, 25(1): 69-73.
[5] 韩德奇, 洪国忠, 吴俊岭. 特种蜡的生产现状与市场分析[J]. 现代化工, 2001, 21(9):48-52.
Han D Q, Hong G Z, Wu J L. Production Status and Market Analysis of Special Wax[J]. Modern Chemicals, 2001, 21(9): 48-52.
[6] Ye H, Ge X S. Preparation of polyethylene–paraffin compound as a form-stable solid-liquid phase change material[J]. Solar Energy Materials & Solar Cells, 2000, 64(1):37-44.
[7] Liu J, Li F, Gong X, et al. Experimental research in the phase change materials based on paraffin and expanded perlite[J]. Phase Transitions, 2018, 91(6):1-7.
[8] Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable & Sustainable Energy Reviews, 2010, 14(2):615-628.
[9] Mehta P K , Monteiro P J M . Concrete : microstructure, properties, and materials[M]. Prentice-Hall, 2013.
[10] Schmeling H. Numerical models on the influence of partial melt on elastic, anelastic and electrical properties of rocks. Part II: electrical conductivity[J]. Physics of the Earth & Planetary Interiors, 1986, 43(2):123-136.
[11] T. J. Shankland, H. S. Waff. Partial melting and electrical conductivity anomalies in the upper mantle[J]. Nature Physical Science, 1973, 244(136):89-91.
[12] Li Y S, Su M X, Yang H L, et al. Simulation of ultrasonic attenuation in theelastic mixing particle system[J]. Chinese Journal of Acoustics, 2018, 42(1):99-109.
[13] Njeh C F, Kuo C W, Langton C M, et al. Prediction of human femoral bone strength using ultrasound velocity and BMD: an in vitro study.[J]. Osteoporosis International, 1997, 7(5):471-477.
[14] 苏明旭, 蔡小舒, 徐峰等. 超声衰减法测量悬浊液中颗粒粒度和浓度 [J]. 声学学报, 2004, 29(5): 440-444.
Su M X, Cai X S, Xu F et al. Measurement of Particle Size and Concentration in Suspension by Ultrasonic Attenuation Method[J]. Acta Chim. Sinica, 2004, 29(5): 440-444.
[15] 黄燕平, 郑永平. 基于超声的组织弹性测量之剪切波传播法[J]. 中国医疗设备, 2011, 26(10):1-12.
Huang Y P, Zeng Y P. Shear wave propagation method based on ultrasound for tissue elasticity measurement[J]. China Medical Devices, 2011, 26(10):1-12.
[16] Hu E, Wang W. The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature[J]. Mathematical Problems in Engineering,2016,(2016-1-6), 2016, 2016(9):1-7.
[17] Lee H K, Lee K M, Kim Y H, et al. Ultrasonic in-situ monitoring of setting process of high-performance concrete[J]. Cement & Concrete Research, 2004, 34(4):631-640.
[18] Song G. Development of an ultrasonic system to measure material elastic constants of small sample[J]. Chinese Journal of Scientific Instrument, 2006, 27(9):1012-1015.
[19] Hirao M, Ogi H. In-Situ Monitoring of Dislocation Mobility[M].Electromagnetic Acoustic Transducers. Springer Japan, 2017:105-134.
[20] 章维, 苏明旭, 蔡小舒,等. 基于超声衰减谱和声速度的颗粒粒径测量[J]. 化工学报, 2014, 65(3):898-904.
Zhang W, Su M X, Cai X S, et al. Measurement of particle size based on ultrasonic attenuation spectrum and acoustic velocity[J]. CIESC Journal, 2014, 65(3): 898-904.
|