过程工程学报 ›› 2019, Vol. 19 ›› Issue (S1): 10-24.DOI: 10.12034/j.issn.1009-606X.219142
齐涛1,2*, 王伟菁1,2, 魏广叶1,2, 朱兆武1,2, 曲景奎1,2, 王丽娜1,2, 张 绘1,2
收稿日期:
2019-03-01
修回日期:
2019-04-15
出版日期:
2019-06-28
发布日期:
2019-06-10
通讯作者:
齐涛 wangweijingwwj@126.com
基金资助:
Tao QI1,2*, Weijing WANG1,2, Guangye WEI1,2, Zhaowu ZHU1,2, Jingkui QU1,2, Lina WANG1,2, Hui ZHANG1,2
Received:
2019-03-01
Revised:
2019-04-15
Online:
2019-06-28
Published:
2019-06-10
Contact:
Tao QI wangweijingwwj@126.com
摘要: 从资源紧缺、环境污染、产品低端等方面,总结了我国钒、钛、镍、钴、锂稀有金属资源在战略性新兴产业迅猛发展时代所面临的国家重大需求,回顾了领域近年来通过升级和变革传统稀有金属资源利用技术取得的主要进展和成就。其中煤基钠化冶炼、高温碳化?低温氯化、亚熔盐氧化等非常规介质强化手段是实现钒钛磁铁矿中钒、钛绿色高值高效利用的核心;盐酸常压浸出?低温选择性水解?共沉淀新技术是一种低成本、短流程高效高值利用红土镍矿全组分的先进技术代表;双功能协同复合萃取原理是实现高镁盐湖卤水的锂资源绿色利用的关键基础。基于固废资源化和源头减废两个思路,现阶段战略性金属资源的利用技术初步解决了环境污染和资源利用率低的问题,但仍存在资源绿色利用基础原理匮乏、产品科技含量低等普遍问题。以战略性产业关键材料为导向的绿色高值利用技术的应用基础研究是稀有金属相关绿色产业战略性发展的重要科技保障,是未来重要的前沿研究方向。
齐涛 王伟菁 魏广叶 朱兆武 曲景奎 王丽娜 张绘. 战略性稀有金属资源绿色高值利用技术进展[J]. 过程工程学报, 2019, 19(S1): 10-24.
Tao QI Weijing WANG Guangye WEI Zhaowu ZHU Jingkui QU Lina WANG Hui ZHANG . Technical progress of green high-value utilization of strategic rare metal resources[J]. The Chinese Journal of Process Engineering, 2019, 19(S1): 10-24.
[1] 国务院. 关于全国矿产资源规划(2016-2020年)的批复 [Z], 2016-11-02. State council. Reply to the national mineral resource planning (2016-2020) [Z], 2016-11-02. [2] 张璇, 沈真. 航空航天领域先进复合材料制造技术进展[J]. 纺织导报, 2018, -(S1): 72-79. Zhang X, Shen Z. Progress in manufacturing technology of composite materials in the aerospace field[J]. China Textile Leader, 2018, -(S1): 72-79. [3] 张镇, 宋涛, 王本力. 我国电子材料产业发展研究[J]. 新材料产业, 2016, 5(-):1-9. Zhang Z, Song T, Wang B L. Research on the development of China's electronic material industry[J]. Advanced Materials Industry, 2016, 5(-):1-9. [4] 郭海军. 新能源汽车动力电池对有色金属的需求预测[J]. 世界有色金属, 2018, 6(-):210-212. Guo H J. Demand forecast of non-ferrous metals for new energy vehicle po wer batteries[J]. World Nonferrous Metal, 2018, 6(-):210-212. [5] 付自碧. 钒钛磁铁矿提钒工艺发展历程及趋势[J]. 中国有色冶金, 2011, 40(6):29-33. Fu Z B. Development process and trends of vanadium extraction from vanadium-titanium magnetite ore[J]. Chinese Nonferrous Metallurgy, 2011, 40(6):29-33. [6] Qi T, Chen D S, Yi L Y, et al. Method for converting and separating vanadium, titanium, and iron from vanadium-titanium-iron concentrate in one step: US2017/00323 [P]. 2017-01-13. [7] 郭宇峰. 钒钛磁铁矿固态还原强化及综合利用研究 [D]. 博士学位论文. 长沙: 中南大学, 2007: 1-5. Guo Y F. Research on strenthening of solid–state reduction and comprehensive utilization of vanadiferous titanomagnetite [D]. Changsha: Central south university, 2007: 1-5. [8] 王喜庆. 钒钛磁铁矿高炉冶炼[M]. 北京:冶金工业出版社, 1994: 1-10. Wang X Q. Smelting of vanadium titanium magnetite in blast furnace [M]. Beijing: Metallurgical Industry Press, 1994: 1-10. [9] 张一敏, 等. 石煤提钒 [M]. 北京: 科学出版社, 2014: 3-10. Zhang Y M. Extracting vanadium from stone coal [M]. Beijing: Science Press, 2014:3-10. [10] Bleecker W F. Process of producing copper, lead, or iron vanadate from vanadiferous ores: US1015469 A [P]. 1912-01-23 [11] 杨保祥, 胡鸿飞, 唐鸿琴, 等. 钒钛清洁生产 [M]. 北京: 冶金工业出版社, 2017: 19-22. Yang B X, Hu H F, Tang H Q, et al. Clean production of vanadium and titanium resource [M]. Beijing: Metallurgical Industry Press, 2017: 19-22. [12] Shi Y L, Shu J L, Shun W, et al. A novel method for vanadium slag comprehensive utilization to synthesize Zn-Mn ferrite and Fe-V-Cr alloys[J]. Journal of Hazardous Materials, 2018, 354(-): 99-106. [13] Hong Y L, Hai X F, Kang W, et al. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching[J]. Hydrometallurgy, 2015, 156(-): 124-135 [14] 张洋, 郑诗礼, 刘久传, 等. 一种从钒铬废渣中分离回收铬的方法: CN201610822036.7 [P]. 2018-07-17. Zhang Y, Zheng S L, Liu J C, et al. A method for separation and recovery of chromium from vanadium chromium waste slag: CN201610822036.7 [P]. 2018-07-17. [15] 葛怀文. 从含钒尾渣中浸取钒新工艺研究 [D]. 昆明: 昆明理工大学, 2008: 16-18. Ge H W. Study on novel process of extracting vanadium from vanadium containing tailings [D]. Kunming: Kunming university of science and technology, 2008: 16-18. [16] 曹鹏. 钒渣钙化焙烧试验研究[J]. 钢铁钒钛, 2012, 33(1): 30-33. Cao P. Research on vanadium slag roasted with calcium salt[J]. Iron Steel Vanadium Titanium, 2012, 33(1): 30-33. [17] 郑诗礼, 杜浩, 王少娜, 等. 亚熔盐法钒渣高效清洁提钒技术[J]. 钢铁钒钛, 2012, 33(1): 15–19. Zheng S L, Du H, Wang S N, et al. Efficient and cleaner technology of vanadium extraction from vanadium slag by Sub-molten Salt Method[J]. Iron Steel Vanadium Titanium, 2012, 33(1): 15–19. [18] 陆平. 攀钢高炉渣综合利用产业化研究进展及前景分析[J]. 钢铁钒钛, 2013, 34(3): 33–38. Lu P. Progress and prospect of industrialization of comprehensive utilization of Pangang Blast Furnace Slag ( high titanium content)[J]. Iron Steel Vanadium Titanium, 2013, 34(3): 33–38. [19] 杨守志. 钒冶金 [M]. 北京: 冶金工业出版社, 2010, 96–97. Yang S Z. Vanadium metallurgy [M]. Beijing: Metallurgical Industry Press, 2010: 96-97. [20] 中国冶金炉料网. 钒铁精矿直接提钒 [EB/OL]. (2014-7-31)/[2019-02-19]. http://www.ll086.com/news.aspx?bigclass=6&id=164771. China metallurgical burden network. Direct extraction of vanadium from V-Fe concentrate [EB/OL]. (2014-7-31)/[2019-02-19]. http://www.ll086.com/news.aspx?bigclass=6&id=164771 [21] 王伟, 唐明林, 桑世华. 钛精矿生产钛白粉废酸的回收技术研究[J]. 现代盐化工, 2017, 44(5): 50-51. Wang W, Tang M L, Qin S H. Research on the recovery technology of titanium pigment waste acid produced by ilmenite[J]. Modern Salt and Chemical Industry, 2017, 44(5): 50-51. [22] 郭焦星. 用钛白废渣七水硫酸亚铁生产聚合硫酸铁[J]. 化学工程师, 2012, 26(6): 56-59. Guo J X. Producing polymeric ferric sulfate from copperas by-products from titanium dioxide[J]. Chemical Engineer, 2012, 26(6): 56-59. [23] 田犀, 蒲灵, 潘成武. 攀枝花地区钒钛磁铁矿用氯化法和硫酸法生产钛白粉的环境负荷比较[J]. 有色金属, 2010,62(1): 117-120+122. Tian X, Pu L, Pang C W. Environment load of titanium white production by Chlorination Process and Sulfuric Acid Process with V-Ti magnetite from Panzhihua[J]. Nonferrous Metal of China, 2010,62(1): 117-120+122. [24] 杨海舟, 秦玲玲, 陈钢. 钛白废酸回收及综合利用研究进展[J]. 广东化工, 2018, 45(16): 118-119. Yang H J, Qin L L, Chen G. Research progress for recovery and comprehensive utilization of waste acid from titanium dioxide production[J]. Guang Dong Chemical Engineering, 2018, 45(16): 118-119. [25] Gazquez M J, Bolivar J P, Vaca F, et al. Evaluation of the use of TiO2 industry red gypsum waste in cement production[J]. Cement & Concrete Composites, 2013, 37(1): 76-81. [26] Borhan M Z, Nee T Y. Synthesis of TiO2 nanopowders from red gypsum using EDTA as complexing agent[J]. Journal of Nanostructure in Chemistry, 2015, 5(1): 71-76. [27] Rahman M, Ghataora G. Use of waste gypsum for trench backfill[J]. International Journal of Geotechnical Engineering, 2011, 5(4): 405-413. [28] Pérez-Moreno S M, Gázquez M J, Barneto A G, et al. Thermal characterization of new fire-insulating materials from industrial inorganic TiO2 wastes[J]. Thermochimica Acta, 2013, 552(2): 114-122. [29] Rodríguezjordá M P, Garrido F, Garcíagonzález M T. Potential use of gypsum and lime rich industrial by-products for induced reduction of Pb, Zn and Ni leachability in an acid soil[J]. J Hazard Mater, 2010, 175(1–3): 762-769. [30] Contreras M, Gázquez M J, Pérez-Moreno S M, et al. Management and valorisation of wastes and co-products from the TiO2 pigment industry[J]. Waste and Biomass Valorization, 2016, 7(4): 1-14. [31] 王昌松, 姚文俊, 陆小华. 钛铁矿资源综合利用概述[J]. 无机盐工业, 2014, 46(1): 4-7. Wang C S, Yao W J, Lu X H. Summarization of comprehensive utilization of ilmenite resources[J]. Inorganic Chemicals Industry, 2014, 46(1): 4-7. [32] Wang W J, Liu Y H, Xue T Y, et al. Mechanism and kinetics of titanium hydrolysis in concentrated titanyl sulfate solution based on infrared and Raman spectra[J]. Chemical Engineering Science, 2015, 134(-): 196–204 [33] 任丽彬, 许寒, 宗军, 等. 大规模储能技术及应用的研究进展[J]. 电源技术, 2018, 42 (1): 139-142. Ren L B, Xu H, Zong J, et al. Research progress of large-scale energy storage technologies and applications[J]. Chinese Journal of Power Sources, 2018, 42 (1): 139-142. [34] 张华民, 张宇, 李先锋, 等. 全钒液流电池储能技术的研发及产业化[J]. 高科技与产业化, 2018, 263(4): 59-63. Zhang H M, Zhang Y, Li X F, et al. Research and industrialization of power storage technology of all vanadium redox flow battery[J]. High-Technology and Industrialization, 2018, 263(4): 59-63. [35] 谢聪鑫, 郑琼, 李先锋, 等. 液流电池技术的最新进展[J]. 储能科学与技术, 2017, 6(5): 1050–1057. Xie C X, Zheng Q, Li X F, et al. Current advances in the flow battery technology[J]. Energy Storage Science and Technology, 2017, 6(5): 1050–1057. [36] 徐杰. 氯化法制取高纯五氧化二钒工艺研究 [D]. 北京: 中国科学院过程工程研究所, 2018: 5–8. Xu J. Research preparation process of high purity vanadium pentoxide by chlorination method [D]. Beijing: University of Chinese Academy of Sciences. 2018: 5–8. [37] 朱军, 朱明明, 赵奇, 等. 高纯五氧化二钒制备及应用[J]. 中国有色冶金, 2016, 3(-): 47–50. Zhu J, Zhu M M, Zhao Q, et al. High purity vanadium pentoxide preparation and application[J]. Chinese Nonferrous Metallurgy, 2016, 3(-): 47–50. [38] 崔旭梅, 丁虎标. 钒液流电池电解液研究综述[J]. 西华大学学报, 2018, 37(5): 15–19. Cui X M, Ding H B. Research progress of electrolyte for vanadium redox flow battery[J]. Journal of Xihua University(natural science edition), 2018, 37(5): 15–19. [39] 齐涛, 陈德胜, 朱兆武, 等. 制备钒电解液的方法: 201710870679.3 [P]. 2018-01-09. Qi T, Chen D S, Zhu Z W, et al. Method for the preparation of vanadium electrolyte: 201710870679.3 [P]. 2018-01-09. [40] 张健, 朱兆武, 陈德胜, 等. P507萃取纯化V(Ⅳ)制备高纯钒电解液的研究[J]. 稀有金属, 2019, -(-):1–9. Zhang J, Zhu Z W, Chen D S, et al. Study on the Preparation of Highly Pure Vanadium Electrolyte by Solvent Extraction and Purification using P507 from V (IV) solution[J]. Chinese Journal of Rare metals, 2019, -(-):1–9. [41] 谭毅, 薛冰. 锂离子电池负极材料钛酸锂的研究进展[J]. 无机材料学报, 2018, 33(5): 475–482. Tan Y, Xue B. Research Progress on Lithium Titanate as Anode Material in Lithium-ion Battery[J]. Chinese Journal of inorganic materials, 2018, 33(5): 475–482. [42] 焦更生. 钛酸钡介电陶瓷制备方法及其掺杂改性研究进展[J]. 材料导报, 2016, 30(S1): 260–263. Jiao G S. Process in preparation and doping modification of BaTiO3 based on dielectric ceramics material[J]. Chinese Material review, 2016, 30(S1): 260–263. [43] Sohail A J, Mahreen A, Gwanho Y, et al. High refractive index Ti3O5 films for dielectric metasurfaces[J]. Chinese Physics Letters, 2017, 34(8): 148–150. [44] Hayfield P C S. Development of a new material -monolithic Ti4O7 ebonex ceramic [M]. RSC, 2001 [45] 刘伯威, 徐菲, 刘咏, 等. 钛酸钾含量对汽车摩擦材料性能的影响[J]. 材料导报, 2017, 31(12): 45–51. Liu B W, Xu F, Liu Y, et al. Influences of potassium titanate content on the performance of automobile brake materials[J].Chinese Material review, 2017, 31(12): 45–51. [46] 吴玲. 钛化物节能薄膜的制备及其光电性能研究[D]. 浙江:浙江大学, 2012: 6–8. Wu L. Study on synthesis and electrical -optical properties of energy-saving titanium compound films [D]. Zhejiang:Zhe Jiang University, 2012: 6–8. [47] 李斗良, 赵以容, 杨国军. 熔盐电解法制取高纯钛的技术及产业化研究[J]. 中国锰业, 2016, 34(3): 91–94. Li D L, Zhao Y R, Yang G J. Study on technology and industrialization of high purity titanium by molten salt electrolysis[J]. China's Manganese Industry, 2016, 34(3): 91–94. [48] Walsh F C, Wills R G A . The continuing development of Magnéli phase titanium sub-oxides and Ebonex? electrodes[J]. Electrochimica Acta, 2010, 55(22): 6342–6351. [49] Yang X, Guo J, Zhu Z, et al. Doping effects on the electro-degradation of phenol on doped titanium suboxide anodes[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 164–171. [50] Gong Y, He N, Qin C, et al. Nitrogen-doped carbon-modified titanium oxides supported Pd catalyst for the electro-oxidation of formic acid[J]. Journal of Solid State Electrochemistry, 2018, 10(-): 1–6. [51] 叶金文, 刘颖, 朱瑞杰. 一种纳米Ti4O7粉末的制备方法: CN102642867A [P], 2012–08–22. Ye J W, Liu Y, Zhu R J. A method of nano Ti4O7 powder preparation: CN102642867A [P], 2012–08–22. [52] 亚历山大?辛普森, 菲利普?卡特. 通过用氢气还原制造钛的亚化学计量氧化物的方法: CN101547863[P]. 2009–09–30. Alexder S, Phillipe K. Reduction of titanium to substoichiometric oxides by hydrogen gas: CN101547863[P]. 2009–09–30. [53] Gusev A A, Avvakumov E G, Vinokurova O B. Synthesis of Ti4O7 magnéli phase using mechanical activation[J]. Science of Sintering, 2003, 35(3): 141–145. [54] 李军, 吴恩辉, 侯静, 等. 制备Magnéli相低价钛氧化物的方法:CN106830065A [P], 2017–06–13. Li J, Wu E H, Hou J, et al. Preparation of low titanium oxide Magnéli phase method:CN106830065A [P], 2017–06–13. [55] Ping G, Su J Y, Caroline M, et al. Highly-ordered magnéli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation[J]. Electrochimica Acta, 2015, 153(-):316–324. [56] Wang Y, Qin Y, Li G, et al. One-step synthesis and optical properties of blue titanium suboxide nanoparticles[J]. Journal of Crystal Growth, 2005, 282(3-4): 402–406. [57] 李钒, 李文超. 冶金与材料热力学 [M]. 北京: 冶金工业出版社, 2012: 435. Li F, Li W C. Metallurgy and material thermodynamics [M]. Beijing: Metallurgical Industry Press, 2012: 435. [58] 张守卫, 谢曙斌, 徐爱东. 镍的资源、生产及消费状况[J]. 世界有色金属, 2003, 11(-): 9–15. Zhang S W, Xie S B, Xu A D. Status quo of nickel resources, production and consumption[J]. World Nonferrous Metals, 2003, 11(-): 9–15. [59] 兰兴华. 世界镍市场的现状和展望[J]. 世界有色金属, 2003, 6(-): 42–47. Lan X H. The status and prospect of the world nickel market[J]. World Nonferrous Metals, 2003, 6(-): 42–47. [60] 崔和涛, 雪萍, 徐有生. 我国镍冶金的发展和工艺技术进步[J]. 矿冶, 1997, 6(2): 43–55. Cui H T, Xue P, Xu Y S. Development of nickel metallurgy and progress of technology in china[J]. Mining & Metallurgy, 1997, 6(2): 43–55. [61] 齐涛. 钛、锆、镍湿法冶金技术 [M]. 北京: 科学出版社, 2016: 171–180. Qi T. Hydrometallurgical technology of titanium, zirconium and nickel [M]. Beijing: Science Press, 2016: 171–180. [62] Dalvi A D, Bacon W G, Osborne R C. The past and the future of nickel laterites [C]//in PDAC 2004 International Convention, 2004: 7–10. [63] McDonald R G, Whittington B I. Atmospheric acid leaching of nickel laterites review[J]. Part I. Sulphuric acid technologies. Hydrometallurgy, 2008, 91(1-4): 35–55. [64] King M G. Nickel laterite technology--finally a new dawn?[J]. JOM, 2005, 57(7): 35–39. [65] Kar B B, Swamy Y V, Murthy B V R. Design of experiments to study the extraction of nickel from lateritic ore by sulphatization using sulphuric acid[J]. Hydrometallurgy, 2000, 56(-): 387–394. [66] Swamy Y V, Kar B B, Mohanty J K. Physico-chemical characterization and sulphatization roasting of low-grade nickeliferous laterites[J]. Hydrometallurgy, 2003, 69(1-3): 89–98. [67] 孙镇, 赵景富, 郑鹏. 红土型镍矿RKEF工艺冶炼镍铁实践研究[J]. 有色矿冶, 2013, 29(3): 35–39, 51. Sun Z, Zhao J F, Zheng P. Practice research of RKEF process on smelting ferronickel for lateritic nickel ore[J]. Non-Ferrous Mining and Metallurgy, 2013, 29(3): 35–39, 51. [68] 秦丽娟, 赵景富, 孙镇, 等. 镍红土矿RKEF法工艺进展[J]. Non-Ferrous Mining and Metallurgy, 2012, 28(2): 34–36, 39. Qin L J, Zhao J F, Sun Z, et al. Nickel laterite rotary kiln-electric furnace process and development[J]. 有色矿冶, 2012, 28(2): 34–36, 39. [69] 钱志东. 红土镍矿冶炼行业(RKEF工艺)清洁生产评价指标体系构建及实例研究 [D]. 福建: 福建师范大学, 2014: 1-2. Qian Z D. Research on index system and example of cleaner production assessment in laterite nickel ore smelting industry [D]. Fujian: Fujian normal university, 2014: 1-2. [70] 孙建之, 陈勃伟, 温建康, 等. 镍矿湿法冶金技术应用进展及研究展望[J]. 中国有色金属学报, 2018, 28(2):356–364. Sun J Z, chen B W, Wen J K, et al. Application and research progresses of hydrometallurgy technology for nickel ore[J]. Nonferrous Metal of China, 2018, 28(2):356–364. [71] 倪世跃, 周俐. 红土镍矿综合利用技术现状及发展趋势[J]. 金属材料与冶金工程, 2014, 42(5):54–57. Nie S Y, Zhou L. Status quo and development trends of comprehensive utilization technology for laterite nickel ore[J]. Metal Materials and Metallurgy Engineering, 2014, 42(5):54–57. [72] Caron M H. Process of recovering values from nickel and cobalt-nickel ores: US1487145 [P], 1924–03–18. [73] Whittington B I, Muir D. Pressure acid leaching of nickel laterites: A review[J]. Mineral Processing and Extractive Metallurgy Review, 2000, 21(6): 527–599. [74] Zhu Z, Pranolo Y, Zhang W, et al. Precipitation of impurities from synthetic laterite leach solutions[J]. Hydrometallurgy, 2010, 104(1): 81–85. [75] Norgate T, Jahanshahi S. Assessing the energy and greenhouse gas footprints of nickel laterite processing[J]. Minerals Engineering, 2011, 24(7): 698–707. [76] Wills B. Downstream Processing Options for Nickel Laterite Heap Leach Liquors [C]//ALTA 2006 Nickel/Colbatl 11. ALTA Metallurgical Services, 2007. [77] Wang B, Guo Q, Wei G, Zhang P, et al. Characterization and Atmospheric Hydrochloric Acid Leaching of a Limonitic Laterite From Indonesia[J]. Hydrometallurgy, 2012, 129(-): 7–13. [78] Li J, Xiong D, Chen H, Wang R, et al. Physicochemical factors affecting leaching of Laterite Ore in hydrochloric acid[J]. Hydrometallurgy, 2012, 129(-): 14–18. [79] 张培育. 红土镍矿酸浸-水解耦合新工艺选择性浸出镍钴应用基础研究 [D]. 北京: 中国科学院大学, 2016: 15–18. Zhang P Y. Application and basic study on the new process for the selective leaching of Ni and Co from Laterite Ore by leaching-hydrolysis coupling reactions [D]. Beijing: University of Chinese academy of sciences, 2016: 15–18. [80] 郭强. 碱熔活化处理褐铁型红土镍矿工艺的基础研究及应用 [D]. 北京: 中国科学院大学, 2011: 5–20. Guo Q. Basic research and application of alkali fusion activation process for treating ferro-brown laterite nickel ore [D]. Beijing: University of Chinese academy of sciences, 2011: 5–20. [81] 曲景奎, 马飞, 魏广叶, 等. 一种由红土镍矿的酸浸出液直接制备镍钴铝三元正极材料前驱体的方法: CN201710729070.4[P], 2017–08–23. Qu J K, Ma F, Wei G Y, et al. A method for preparing nickel-cobalt-aluminum ternary cathode precursor directly from an acid leachate of lateritic nickel ore: CN201710729070.4[P], 2017–08–23. [82] Koltsov V Y, Novikov P Y, Sarychev G A, et al. Experimental investigations during the technology development of sulfuric acid processing of spodumene concentrate[J]. Tsvetnye Metally, 2016, 4(-): 18–22. [83] 李良彬, 刘明, 彭爱平, 等. 锂云母提锂工艺及工业化应注意的问题[J]. 世界有色金属, 2014, 8(-): 37–39. Li L B, Liu M, Peng A P, et al. The process of extracting lithium from lithium mica and the industrial problems[J]. World Nonferrous Metal, 2014, 8(-): 37–39. [84] Arne S K, Johan W S. Method of recovering lithium salts from lithium-containing minerals: US24041638A [P]. 1941–01–28. [85] Barbosa L I, Valente G, Orosco R P, et al. Lithium extraction from beta-spodumene through chlorination with chlorine gas[J]. Minerals Engineering, 2014, 56(-): 2–34. [86] 赵元艺, 郑绵平, 卜令忠, 等. 西藏碳酸盐型盐湖卤水锂盐提取盐田工艺研究[J]. 盐科学与化工, 2005, 34(2): 1–6. Zhao Y Y, Zheng M P, Bu L Z, et al. Study on Salt Pan Technology of Lithium Salt Extracting from Carbonate-type Saline Lakes,Tibet[J]. Sea-Lake Salt &Chemical Industry, 2005, 34(2): 1–6. [87] 杨建元, 夏康明. 用高镁含锂卤水生产碳酸锂、氧化镁和盐酸的方法: CN1724372 [P]. 2006–01–25. Yang H Y, Xia K M. Production of lithium carbonate, magnesium oxide and hydrochloric acid from brine containing high magnesium and lithium: CN1724372 [P]. 2006–01–25. [88] Nelli J R, Arthur T E. Recovery of lithium from bitterns: US3537813 [P]. 1970–11–03 [89] 陈程, 李亦然, 孙占学, 等. 磁性铝盐吸附剂的制备及高镁锂比盐湖卤水中提锂性能研究[J]. 有色金属(冶炼部分), 2018, 1(-): 29–33. Chen C, Li Y R, Sun Z X, et al. Preparation of magnetic aluminum salt adsorbent and extraction performance of lithium from saline lake brine with high magesium lithium ratio[J]. Nonferrous Metals(Extractive Metallurgy), 2018, 1(-): 29–33. [90] 郭敏, 封志芳, 周园, 等. 吸附法从盐湖卤水中提锂的研究进展[J]. 广州化工, 2016, 44(20): 10–13. Guo M, Feng Z F, Zhou Y, et al. Research Progress on Extraction of Lithium from Brine by Lithium Adsorbent[J]. Guangzhou Chemical Industry, 2016, 44(20): 10–13. [91] 马培华, 邓小川, 温现民. 从盐湖卤水中分离镁和浓缩锂的方法: CN1626443A [P]. 2005–06–15. Ma P H, Deng X C, Wen X M. A method for separating magnesium and concentrating lithium from salt lake brine: CN1626443A [P]. 200–06–15. [92] 王传福. 盐析法盐湖卤水除镁生产碳酸锂、硼酸和高纯氧化镁的方法: CN102358622A [P]. 2012–02–22. Wang C F. Production of lithium carbonate, boric acid and high purity magnesium oxide by removing magnesium from salt lake brine in salting-out method: CN102358622A [P]. 2012–02–22. [93] 汤卫平. 全球盐湖提锂技术的现状与趋势 [C]//碳酸锂及锂电正极材料研讨会, 2016.04.19, 上海. Tango W P. Current situation and trend of lithium extraction technology from salt lakes in the world[C]//Seminar on Lithium Carbonate and Lithium Cathode Materials, 2016.04.19, Shanghai. [94] 伍倩, 刘喜方, 郑绵平, 乜贞, 余疆江. 我国盐湖锂资源开发现状、存在问题及对策[J]. 现代化工, 2017, 5(-): 1–5. Wu Q, Liu X F, Zheng M P, Ye Z, Yu J J. Present situation, existing problems and countermeasures of development of salt lake lithium resources in China[J]. Modern Chemical Industry, 2017, 5(-): 1–5. [95] 冯洪兰. 青海省锂资源开发利用现状及前景[J]. 化工矿物与加工, 2017, 7(-): 67–69. Feng H L. Present situation and prospects of lithium resources development and utilization in Qinghai[J]. Industrial Minerals & Processing, 2017, 7(-): 67–69. [96] An J, Kang D, Tran K, et al. Recovery of lithium from Uyuni salar brine[J]. Hydrometallurgy, 2012, 117-118(-): 64–70. [97] Tran K, Han K, Kim S, et al. Recovery of magnesium from Uyuni salar brine as hydrated magnesium carbonate[J]. Hydrometallurgy, 2016, 160(-): 106–114. [98] Somrani A, Hamzaoui A H, Pontie M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)[J]. Desalination, 2013, 317(-): 184–192. [99] 黄师强, 崔荣旦, 张淑珍, 等. 一种从含锂卤水中提取无水氯化锂的方法: CN87103431 [P]. 1987–11–04. Huang S Q, Cui R Q, Zhang S Z, et al. A method for extracting anhydrous lithium chloride from a lithium containing brine: CN87103431 [P]. 1987–11–04. [100] 袁承业, 李丽娟, 时东, 等. 采用萃取法从含锂卤水中提取锂盐的方法: CN103055538 [P]. 2013–04–24. Yuan C Y, Li L J, Shi D, et al. A method of extracting a lithium salt from a lithium brine with an extraction process: CN103055538 [P]. 2013–04–24. [101] Xiang W, Liang S, Zhou Z, et al. Lithium recovery from salt lake brine by counter-current extraction using tributyl phosphate/FeCl3 in methyl isobutyl ketone[J]. Hydrometallurgy, 2017, 171(-): 27–32. [102] Shi C, Duan D, Jia Y, et al. A highly efficient solvent system containing ionic liquid in tributylphosphate for lithium ion extraction[J]. Journal of Molecular Liquids, 2014, 200(-): 191–195. [103] 朱兆武, 张健, 王丽娜, 等. 一种从含锂卤水中提取锂的复合萃取体系及其萃取方法: CN107502741A [P]. 2017–12–22. Zhu Z W, Zhang J, wang L N, et al. A composite extraction system for extracting lithium from a lithium-containing brine: CN107502741A [P]. 2017–12–22. [104] 朱兆武, 张健, 王丽娜, 等. 从含锂卤水萃取后的负载有机相中反萃锂的方法.: CN108893623A [P]. 2018–11–27. Zhu Z W, Zhang J, Wang L N, et al.. A method for reverse extracting lithium from the supported organic phase after extracting the lithium brine: CN108893623A [P]. 2018–11–27. |
[1] | 苍大强 张玲玲 刘洋 陈兆厚 何冰阳. 国内外钢铁工业固相二次资源利用现状、存在问题与对策[J]. 过程工程学报, 2022, 22(10): 1418-1424. |
[2] | 白晨光 吕学伟 邱贵宝 张生富. 攀西钒钛磁铁矿资源高效冶金及清洁提取研究进展[J]. 过程工程学报, 2022, 22(10): 1390-1399. |
[3] | 徐振亚 苏慧 张健 刘文森 朱兆武 王京刚. 萃取法在盐湖卤水提硼中的研究进展[J]. 过程工程学报, 2021, 21(11): 1259-1268. |
[4] | 孙昊延 朱庆山 李洪钟. 钒钛磁铁矿流态化直接还原技术现状与发展趋势[J]. 过程工程学报, 2018, 18(6): 1145-1159. |
[5] | 赵春龙 孙峙 郑晓洪 高文芳 张延玲 林晓. 碳酸锂的制备及其纯化过程的研究进展[J]. 过程工程学报, 2018, 18(1): 20-28. |
[6] | 肖万海 赵宏欣 宋宁 陈德胜 刘亚辉 王丽娜 齐涛. 钒钛磁铁矿混合精矿在盐酸中Fe/V/Ti的浸出行为[J]. 过程工程学报, 2016, 16(5): 737-743. |
[7] | 周密 姜涛 王艳军 杨松陶 张立恒 薛向欣. 碱度对含铬型钒钛磁铁矿烧结性能的影响[J]. 过程工程学报, 2015, 15(3): 457-462. |
[8] | 陈双印 郭鹏辉 储满生 郭鹏辉 韩元庭. 钒钛磁铁矿的煤粉还原过程[J]. , 2013, 13(2): 236-240. |
[9] | 李兰杰 张力 郑诗礼 娄太平 张懿 陈东辉 陈东辉 张燕. 钒钛磁铁矿钙化焙烧及其酸浸提钒[J]. , 2011, 11(4): 573-578. |
[10] | 姜承志 翟秀静 张廷安. 乳状液膜法提取红土矿浸出液中镍[J]. , 2010, 10(4): 691-695. |
[11] | 李艳;齐涛;王丽娜;邹兴;张懿. 离子筛材料的合成及其对盐湖卤水中锂的选择性吸附[J]. , 2006, 6(5): 724-728. |
[12] | 王丽娜;齐涛;李会泉;张懿. 新型硼螯合树脂的合成及其对盐湖卤水中硼的吸附[J]. , 2004, 4(6): 502-507. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||