过程工程学报 ›› 2019, Vol. 19 ›› Issue (S1): 115-122.DOI: 10.12034/j.issn.1009-606X.219176CSTR: 32067.14.jproeng.219176
刘仕尧1,2, 黄家玉1*, 罗锦洪3, 邓 双1*, 郭凤艳1
收稿日期:
2019-04-10
修回日期:
2019-05-31
出版日期:
2019-06-28
发布日期:
2019-06-10
通讯作者:
黄家玉 aassxx789@163.com
基金资助:
Shiyao LIU1,2, Jiayu HUANG1*, Jinhong LUO3, Shuang DENG1*, Fengyan GUO1
Received:
2019-04-10
Revised:
2019-05-31
Online:
2019-06-28
Published:
2019-06-10
摘要: 富氧燃烧技术可有效控制温室气体排放,是一种具有应用潜力的节能减排技术。本工作系统总结分析了富氧燃烧方式下关键烟气组分(SOx, NOx, H2O, Cl2/HCl等)对SO3和Hg排放规律的影响及飞灰对烟气中SO3吸附去除和Hg富集规律的影响,提出了富氧燃烧方式下较优的具可行性的污染物协同控制技术建议,为富氧燃烧技术工业应用面临的污染物协同控制提供重要参考。分析了目前富氧燃烧方式下SO3和Hg排放规律及优化控制研究存在的问题,对未来的研究方向提出了建议。
刘仕尧 黄家玉 罗锦洪 邓双 郭凤艳. 富氧燃烧方式下烟气中SO3和Hg的排放及控制研究进展[J]. 过程工程学报, 2019, 19(S1): 115-122.
Shiyao LIU Jiayu HUANG Jinhong LUO Shuang DENG Fengyan GUO. Research progress on emission and control of SO3 and mercury in oxy-fuel combustion flue gas[J]. Chin. J. Process Eng., 2019, 19(S1): 115-122.
[1]郑楚光, 赵永椿, 郭欣.中国富氧燃烧技术研发进展[J].中国电机工程学报, 2014, 34(23):3856-3864 [2]Zheng CH G, Zhao Y CH, Guo X.Research and development of oxy-fuel combustion in china[J].Proceedings of the CSEE, 2014, 34(23):3856-3864 [3]刘典福, 周超群, 孙雍春.燃烧技术的研究现状及进展[J].广州化工, 2017, 45(24):2- [4]Liu D F, Zhou CH Q, S Y CH.Research progress and expectation of O2C02 combustion technology[J].Guangzhou Chemical Industry, 2017, 45(24):28-30 [5]Fuel Research, New Fuel Research Study Results Reported from University of Stuttgart (High-Temperature Conversion of SO3 to SO3: Homogeneous Experiments and Catalytic Effect of Fly Ash from Air and Oxy-fuel Firing) [J].Energy Weekly News, 2015. [6]Sp?Rl R, Belo L, Shah K, et al.Mercury Emissions and Removal by Ash in Coal-Fired Oxy-fuel Combustion[J].Energy & Fuels, 2014, 28(1):123-135 [7]Sp?Rl R, Maier J, Belo L, et al.Mercury and SO3 Emissions in Oxy-fuel Combustion [J]. Energy Procedia, 2014, 63: 386-402. [8]Sp?Rl R, Maier J, Scheffknecht, Günter.Sulphur Oxide Emissions from Dust-fired Oxy-fuel Combustion of Coal [J]. Energy Procedia, 2013, 37: 1435-1447. [9]吴辉, 邱勇, 刘豪, 等.O2/CO2气氛中SO2和NO对HCl均相氧化Hg的影响研究 [J]. 工程热物理学报, 2013(12): 2418-2422. [10]Wu H, Qiu Y, Liu H, et al.Experimental study about NO and S02 influence on homogeneous mercury oxidation by HCl under 02/C02 atmosphere [J]. Journal Of Engineeging Thermophysics, 2013(12): 2418-2422. [11]王卉, 段钰锋, 李雅宁, 等.煤在富氧流化床燃烧条件下汞的析出及形态分布 [J]. 化工进展, 35(10). [12]Wang H, Duan Y F, Li Y N, et al.Mercury emission and speciation distribution under oxy coal combustion in fluidized bed [J]. Chemical Industry and Engineerning Progress, 35(10). [13]李雅宁, 段钰锋, 王卉, 等.O2/CO2气氛下煤中汞的释放特性[J]. 化工进展, 2017(1). [14]Li Y N,Duan Y F,Wang H,et al.Release characteristics of mercury in coal under 02/C02 atmosphere [J]. ChemicalL Industry and Engineerning Progress, 2017(1). [15]Yang J, Ma S, Zhao Y, et al.Mercury emission and speciation in fly ash from a 35 MWth large pilot boiler of oxyfuel combustion with different flue gas recycle [J]. Fuel, 2017, 195: 174-181. [16]Wang H, Duan Y, Li Y N, et al.Investigation of mercury emission and its speciation from an oxy-fuel circulating fluidized bed combustor with recycled warm flue gas [J]. Chemical Engineering Journal, 2016, 300: 230-235. [17]代维, 文军红, 羊东明, 等.铝合金换热器汞腐蚀与防护[J].石油化工腐蚀与防护, 2009, 26(6):36-38 [18]Dai W, Wen J H, Yang D M, et al.Mercury corrosion and protection of aluminum alloy heat exchanger[J].Corrosion & Protection in Petrochemical Industry, 2009, 26(6):36-38 [19]Alzueta U.Measurement and modeling of sulfur trioxide formation in a flow reactor under post-flame conditions[J].Combustion & Flame, 2013, 160(6):1142-1151 [20]Fleig D, Andersson K, Normann F, et al.SO3 Formation under Oxyfuel Combustion Conditions[J].Industrial & Engineering Chemistry Research, 2011, 50(50):8505-8514 [21]Wang H, Duan Y, Li Y N, et al.Experimental Study on Mercury Oxidation in a FluidizedBed under O2CO2 and O2N2Atmospheres[J].Energy & Fuels, 2016, 30(6):5065-5070 [22]肖海平, 韩高岩, 董琳, 等.烟气循环方式对生成的影响[J].动力工程学报, 2015, 35(11):918-922 [23]Xiao H P, Han G Y, Dong L, et al.Influence of flue gas circulation mode on the formation of SO3[J].Journal of Chinese Society of Power Engineering, 2015, 35(11):918-922 [24]Sarbassov Y, Duan L, Jeremias M, et al.SO3 formation and the effect of fly ash in a bubbling fluidised bed under oxy-fuel combustion conditions [J]. Fuel Processing Technology, 2017, 167: 314-321. [25]SO3 formation under oxy-CFB combustion conditions [J].International Journal of Greenhouse Gas Control, 2015, 43: 172-178. [26]Wang F, Shen B, Yang J, et al.Review of Mercury Formation and Capture from CO2-Enriched Oxy-Fuel Combustion Flue Gas[J].Energy & Fuels, 2017, 31(2):1053-1064 [27]Wu H, Liu H, Wang Q, et al.Experimental study of homogeneous mercury oxidation under O2CO2 atmosphere[J].Proceedings of the Combustion Institute, 2013, 34(2):2847-2854 [28]Alzueta U.Measurement and modeling of sulfur trioxide formation in a flow reactor under post-flame conditions[J].Combustion & Flame, 2013, 160(6):1142-1151 [29]Han B, Kim H J, Kim Y J.Fine particle collection of an electrostatic precipitator in CO2-rich gas conditions for oxy-fuel combustion[J].Science of the Total Environment, 2010, 408(21):5158-5164 [30]Mitsui Y, Imada N, Kikkawa H, et al.Study of Hgand SO3 behavior in flue gas of oxy-fuel combustion system [J]. International Journal of Greenhouse Gas Control, 2011, 5(supp-S1). [31]Wang X, Liu X, Li D, et al.Effect of steam and sulfur dioxide on sulfur trioxide formation during oxy-fuel combustion [J]. International Journal of Greenhouse Gas Control, 2015, 43: 1-9. [32]杭的强, 胡长兴, 郭瑞堂, 等.富氧燃烧气氛中H2O和HCl对HgO氧化的影响 [J]. 热力发电, 2016, 45(7). [33]Hang D Q, Hu CH X, Guo R T, et al.Effect of H2O and HCl on in oxygen-enriched oxidation of elementary mercury combustion atmosphere [J]. Thermal Power Generation, 2016, 45(7). [34]Wang H, Duan Y, Li Y N, et al.Prediction of Synergic Effects of H2O,SO2,and HCl on Mercury and Arsenic Transformation underOxy-Fuel Combustion Conditions[J].Energy & Fuels, 2016, 30(10):8463-8468 [35]Fernández-Miranda, Nuria, Lopez-Anton M A, Díaz-Somoano, Mercedes, et al.Effect of Oxy-Combustion Flue Gas on Mercury Oxidation[J].Environmental Science & Technology, 2014, 48(12):7164-7170 [36]Fleig D, Andersson K, Johnsson F.Influence of Operating Conditions on SO\r,3\r,Formation during Air and Oxy-Fuel Combustion[J].Industrial & Engineering Chemistry Research, 2012, 51(28):9483-9491 [37]Armitage J W, Cullis C F.Studies of the reaction between nitrogen dioxide and sulfur dioxide[J].Combustion & Flame, 1971, 16(2):125-130 [38]Ting T, Stanger R, Wall T.Laboratory investigation of high pressure NO oxidation to NO2 and capture with liquid and gaseous water under oxy-fuel CO2 compression conditions[J].International Journal of Greenhouse Gas Control, 2013, 18(Complete):15-22 [39]Winkler F, Schoedel N, Zander H J, et al.Cold DeNOx development for oxyfuel power plants [J]. International Journal of Greenhouse Gas Control, 2011, 5(supp-S1). [40]Li X, Huang Q, Luo C, et al.Effect of acid gases on elemental mercury removal in oxy-fuel CO2 compression process [J]. Energy & Fuels, 2017, 32(4). [41]Status review of mercury control options for coal-fired power plants [J].Fuel Processing Technology, 2003, 82(2): 89-165. [42]Wall T, Liu Y, Spero C, et al.An overview on oxyfuel coal combustion—State of the art research and technology development[J].Chemical Engineering Research & Design, 2009, 87(8):1003-1016 [43]Izquierdo M T, de las Obras-Loscertales M, de Diego L F, et al.Mercury emissions from coal combustion in fluidized beds under oxy-fuel and air conditions: Influence of coal characteristics and O2 concentration [J]. Fuel Processing Technology, 2017, 167: 695-701. [44]Galbreath K C, Zygarlicke C J.Mercury transformations in coal combustion flue gas[J].Fuel Processing Technology, 2000, 65-66(none):289-310 [45]Belo L P, Elliott L K, Stanger R J, et al.Impacts of Sulfur Oxides on Mercury Speciation andCapture by Fly Ash during Oxy-fuel Pulverized Coal Combustion[J].Energy & Fuels, 2016, 30(10):8658-8664 [46]Granite E J, Presto A A.Comment on the“Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon”[J].Energy & Fuels, 2008, 22(5):3557-3558 [47]Duan L, Zhou W, Li H, et al.Sulfur fate during bituminous coal combustion in an oxy-fired circulating fluidized bed combustor[J].Korean Journal of Chemical Engineering, 2011, 28(9):1952-1955 [48]Galloway B D, Sasmaz E, Padak B Binding of SO3 to fly ash components: CaO, MgO, Na_2 Oand K_2 O [J].Fuel, 2015, 145(1): 79-83. [49]J?Rgensen T L, Livbjerg H, Glarborg P.Homogeneous and heterogeneously catalyzed oxidation of SO2[J].Chemical Engineering Science, 2007, 62(16):4496-4499 [50]AndrzejUrbanek, MarekTrela.Catalytic Oxidation of Sulfur Dioxide[J].Catalysis Reviews, 1980, 21(1):61- [51]Kim K H, Choi J S.Kinetics and mechanism of the oxidation of sulfur dioxide onalpha.-Fe2O3[J].Carcinogenesis, 1981, 85(17):2447-2450 [52]M.Antonia Lopez-Antona,Ron Perrya,Patricia Abad-Valleb,Mercedes Díaz-Somoanob,MRos. Speciation of mercury in fly ashes by temperature programmed decomposition[J].Fuel Processing Technology, 2011, 92(3):707-711 [53]Zhuang Y, Pavlish J H.Fate of Hazardous Air Pollutants in Oxygen-Fired Coal Combustion with Different Flue Gas Recycling[J].Environmental Science & Technology, 2012, 46(8):4657-4665 [54]Jew A D, Rupp E C, Geatches D L, et al.Mercury Interaction with the Fine Fraction of Coal-Combustion Fly Ash in a Simulated Coal Power Plant Flue Gas Stream[J].Energy & Fuels, 2015, 29(9):6025-6038 [55]Kostova I, Vassileva C, Dai S, et al.Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants[J].International Journal of Coal Geology, 2013, 116-117(Complete):227-235 [56]Fernández-Miranda, Nuria, Rumayor M, Lopez-Anton M A, et al.Mercury Retention by Fly Ashes from Oxy-fuel Processes[J].Energy & Fuels, 2015, 29(4):2227-2233 [57]Bhardwaj R, Chen X, Vidic R D.Impact of Fly Ash Composition on Mercury Speciation in Simulated Flue Gas[J].Journal of the Air & Waste Management Association, 2009, 59(11):1331-1338 [58]He P, Zhang X B, Peng X L, et al.Effect of fly ash composition on the retention of mercury in coal-combustion flue gas [J]. Fuel Processing Technology, 2016, 142: 6-12. [59]Wang F, Wang S, Meng Y, et al.Mechanisms and roles of fly ash compositions on the adsorption and oxidation of mercury in flue gas from coal combustion [J]. Fuel, 2016, 163: 232-239. [60]Abad-Valle P, Lopez-Anton M A, Diaz-Somoano M, et al.Influence of iron species present in fly ashes on mercury retention and oxidation[J].Fuel, 2011, 90(8):2808-2811 [61]Toftegaard M B, Brix J, Jensen P A, et al.Oxy-fuel combustion of solid fuels[J].Progress in Energy & Combustion Science, 2010, 36(5):581-625 [62]Abad-Valle P, Lopez-Anton M A, Diaz-Somoano M, et al.The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury[J].Chemical Engineering Journal, 2011, 174(1):86-92 [63]Quirós-álvarez, Margarita, Diaz Somoano M, Bongartz W, et al.Mercury interaction on modified activated carbons under oxyfuel combustion conditions [J]. Energy & Fuels, 2018: acs.energyfuels.8b00468. [64]Hower J C, Senior C L, Suuberg E M, et al.Mercury capture by native fly ash carbons in coal-fired power plants[J].Progress in Energy and Combustion Science, 2010, 36(4):510-529 [65]Wilcox J, Rupp E, Ying S C, et al.Mercury adsorption and oxidation in coal combustion and gasification processes [J]. International Journal of Coal Geology, 2012, 90: 4-20. [66]Ren J, Chen J, Luo Y, et al.Research on vapor mercury adsorption by Ca-based sorbents[C]//2009 International Conference on Energy and Environment Technology. IEEE, 2009, 3: 504-508. [67]Deng S, Shu Y, Li S, et al.Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention [J]. Journal of hazardous materials, 2016, 301: 400-406. [68]Yang J, Zhao Y, Chang L, et al.Mercury adsorption and oxidation over cobalt oxide loaded magnetospheres catalyst from fly ash in oxyfuel combustion flue gas[J].Environmental science & technology, 2015, 49(13):8210-8218 [69]Zhang C, Song W, Zhang X, et al.Synthesis,characterization and evaluation of resin-based carbon spheres modified by oxygen functional groups for gaseous elemental mercury capture[J].Journal of materials science, 2018, 53(13):9429-9448 [70]杨用龙, 苏秋凤, 张杨, 等.燃煤电站典型超低排放工艺的SO3脱除性能及排放特性 [J/OL]. 中国电机工程学报: (2016?3?11)/[2019-04-08]. https://doi.org/10.13334/j.0258-8013.pcsee.172356. [71]Yang Y L, Su Q F, Zhang Y, et al.Removal Performance and Emission Characteristics of SO3 by Typical Ultra-low Emission [72]Technologies in Coal-fired Power Plants.[J/OL]. Proceedings of the CSEE: (2016?3?11)/[2019-04-08]. https://doi.org/10.13334/j.0258-8013.pcsee.172356. [73]李高磊, 郭沂权, 张世博, 等.超低排放燃煤电厂生成及控制的试验研究[J].中国电机工程学报, 2019, 39(04):1079-1086 [74]Li G L, Guo X Q, Zhang S B, et al.Experimental Research on SO3 Generation and Control in Ultra-low Emission Coal-fired Power Plant[J].Proceedings of the CSEE, 2019, 39(04):1079-1086 [75]华晓宇, 章良利, 宋玉彩, 等.燃煤机组超低排放改造对汞排放的影响[J].热能动力工程, 2016, 31(07):110-116 [76]Hua X Y, Zhang L L, Song Y C, et al.Influence of the Ultra Low Emission Modification of a Coal-fired Unit on the Mercury Emissions[J].Journal of Engineering for Thermal Energy & Power, 2016, 31(07):110-116 [77]崔立明, 黄志杰, 莫华, 等.不同超低排放技术路线的协同脱汞实测与研究[J].中国电力, 2017, 50(10):136-139 [78]Cui L M, Huang Z J, Mo H, et al.Test and Study on Synergic Mercury Removal Performance of Environmental Protection Facilities at Ultra-Low Pollutants Emission[J].Gas & Heat, 2017, 50(10):136-139 [79]赵毅, 韩立鹏.超低排放燃煤电站汞分布特征研究[J].环境科学学报, 2019, 39(03):853-858 [80]Zhao Y, Han L P.Distribution Characteristics of Mercury in 660MW Coal-fired PowerPlant with Ultra-low Emission[J].Acta Scientiae Circumstantiae, 2019, 39(03):853-858 |
[1] | 陆彪 王行银 胡青云 陈燕 陈德敏 高靖. 富氧燃烧条件对加热炉板坯加热过程的影响[J]. 过程工程学报, 2024, 24(7): 805-814. |
[2] | 白浩隆 付亮亮 许光文 白丁荣. 典型尺寸燃煤颗粒富氧燃烧特性及燃烧本征动力学研究[J]. 过程工程学报, 2022, 22(8): 1115-1123. |
[3] | 李全亮 梅书霞 谢峻林 陈君 刘纲 杨新富 张海波 刘刚. 回转窑二次风富氧燃烧的数值模拟[J]. 过程工程学报, 2022, 22(11): 1565-1573. |
[4] | 任昕 张引弟 刘畅 王珂. O2/CO2气氛中水蒸气预混CH4燃烧特性与烟气余热梯级利用方案[J]. 过程工程学报, 2019, 19(5): 1047-1056. |
[5] | 于荆鑫 王菁 杨凤玲 郝艳红 程芳琴. 基于Aspen Plus的燃煤电厂烟气污染控制单元模拟[J]. 过程工程学报, 2019, 19(2): 329-337. |
[6] | 曹文健 任飞 相龙凯 冯艳 楚化强 顾明言. 富氧气氛下碳氢燃料同轴射流扩散火焰的形态特性[J]. 过程工程学报, 2017, 17(3): 632-639. |
[7] | 赵荣 杨舒萍 卿山 王明悦 梁美玲 桂兆. 响应曲面法评价与优化混煤富氧燃烧特性 [J]. , 2017, 17(1): 110-118. |
[8] | 陈彦广 张雷 韩洪晶 赵哲吉 闫伟宁 宋华. 钙钛矿类混合离子电子导体在污染物处理中应用的研究进展[J]. 过程工程学报, 2015, 15(5): 892-900. |
[9] | 左霜 林金清 孙亚飞 方国阳. SO3H-功能化季铵盐离子液体催化酯交换制备生物柴油[J]. , 2011, 11(1): 153-157. |
[10] | 鲁冠军;赵黛青;杨浩林;杨卫斌. 甲烷/富氧射流扩散火焰NOx的排放特性[J]. , 2007, 7(1): 29-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||