欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2020, Vol. 20 ›› Issue (6): 619-627.DOI: 10.12034/j.issn.1009-606X.219273

• 综述 • 上一篇    下一篇

无机水合盐相变材料过冷度抑制方法的研究进展

陶 文, 张 毅*, 孔祥法, 张晚春, 樊传刚   

  1. 安徽工业大学材料科学与工程学院,安徽 马鞍山 243002
  • 收稿日期:2019-07-24 修回日期:2019-10-11 出版日期:2020-06-22 发布日期:2020-06-19
  • 通讯作者: 张 毅 zhy1987@ahut.edu.cn
  • 基金资助:
    国家自然科学基金项目;安徽省自然科学基金项目

Research progress on supercooling degree suppression of inorganic hydrated salt phase change materials

Wen TAO, Yi ZHANG*, Xiangfa KONG, Wanchun ZHANG, Chuangang FAN   

  1. School of Materials Science and Engineering, Anhui University of Technology, Ma?anshan, Anhui 243002, China
  • Received:2019-07-24 Revised:2019-10-11 Online:2020-06-22 Published:2020-06-19

摘要: 无机水合盐相变材料具有较高的相变潜热、原料易得、安全性高等优点,在未来中低温储能领域有巨大的应用潜力,但其在相变过程中易出现“过冷”与“相分离”等现象,严重影响了其热稳定性能,相关问题可通过添加成核剂、增稠剂进行解决。但无机水合盐在液态下会发生泄漏,需要将其限制在一定区域内。通过多孔材料吸附、微胶囊化等方法可以对无机水合盐相变材料进行封装,多孔材料如膨胀石墨、膨润土、泡沫金属等可以吸附无机水合盐,防止其相变过程发生泄漏。微胶囊包覆则是通过将相变材料微胶囊化封装在壳材内,常用壳材包括聚甲基丙烯酸甲酯、三聚氰胺?甲醛树脂或聚脲树脂等,此外,无机SiO2壁材也是常用的材料。通过吸附封装或者微胶囊化,可以将无机水合盐相变材料限制在一定区域内,提高无机水合盐相变材料的分散性能,降低其过冷度、改善相分离现象,进一步提高无机水合盐相变循环的热稳定性,是解决无机水合盐相变材料在相变过程中渗漏问题的有效方法。本工作综述了无机水合盐相变材料过冷、相分离问题的研究现状,总结了采用多孔材料吸附和微胶囊化抑制或解决无机水合盐过冷度的研究进展,并对今后无机水合盐储能应用研究提出了建议与展望。

关键词: 无机水合盐, 相变材料, 成核剂, 多孔材料, 微胶囊, 过冷

Abstract: Inorganic hydrated salt, as a kind of important phase change materials (PCMs), possess the characteristic of high latent heat of phase change, easy availability and high safety, has a great potential in the application of middle-low temperature thermal energy storage in the future. However, the inherent supercooling and phase separation of the inorganic hydrated salt decreased the thermal stability of these materials, and these problems always resolved by adding nucleating agents and thickening agents. The leakage problems of hydrate salt in liquid state always resolved by the absorption and the microencapsulation method, to limit them in a certain area. So far, by means of porous matrix adsorption, such as expanded graphite, bentonite, foam metal, inorganic hydrated salt PCMs can be absorbed in these matrix and well packaged to prevent them from leakage. Through the microencapsulation method, inorganic hydrate salt can be encapsulated in the organic or inorganic polymer shells such as polymethyl methacrylate, melamine-formaldehyde resin or the polyurethane, inorganic SiO2 shell is another choice for the encapsulation of the materials. Through the absorption or micro-encapsulation method, the dispersibility of the inorganic hydrate salt can be further improved, the supercooling degree of the inorganic hydrate salt can be reduced and the phase separation can be modified, the thermal stability of the materials can be further enhanced, which is an effective way to conquer the leakage problems of the inorganic hydrate salt in the phase change process. In this work, the study on the supercooling and phase separation of inorganic hydrated salt were summarized, for the inhibition of the supercooling and phase separation of inorganic hydrated salt, some methods including absorption of porous materials or microencapsulation method were proposed. Finally, suggestions for future research on energy storage using inorganic hydrated salts were provided.

Key words: inorganic hydrate salt, phase change materials, nucleating agent, porous materials, microencapsulation, supercooling