欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2021, Vol. 21 ›› Issue (10): 1117-1131.DOI: 10.12034/j.issn.1009-606X.220294

• 综述 • 上一篇    下一篇

金属钒的制备方法综述

卢伟亮1,2,3, 张盈1,3,4*, 孙沛5, 郑诗礼1,3*, 乔珊1,3, 张洋1,3, 李平1,3, 张懿1,3   

  1. 1. 中国科学院过程工程研究所绿色过程与工程重点实验室,北京 100190

    2. 中国科学院大学,北京 100049

    3. 中国科学院绿色过程制造创新研究院,北京 100190

    4. 钒钛资源综合利用国家重点实验室,四川 攀枝花 617000

    5. 犹他大学材料科学与工程系,美国 盐湖城 84112

  • 收稿日期:2020-09-09 修回日期:2020-11-07 出版日期:2021-10-28 发布日期:2021-10-26
  • 通讯作者: 张盈 zhangying@home.ipe.ac.cn
  • 基金资助:
    国家自然科学基金资助项目;北京市自然科学基金资助项目;钒钛资源综合利用国家重点实验室开放课题资助项目

A review on the approaches to the production of vanadium metal

Weiliang LU1,2,3,  Ying ZHANG1,3,4*,  Pei SUN5,  Shili ZHENG1,3*,  Shan QIAO1,3,  Yang ZHANG1,3,  #br# Ping LI1,3,  Yi ZHANG1,3   

  1. 1. CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

    2. University of Chinese Academy of Sciences, Beijing 100049, China

    3. Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China

    4. State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua, Sichuan 617000, China

    5. Materials Science & Engineering, University of Utah, Salt Lake City, Utah 84112, USA

  • Received:2020-09-09 Revised:2020-11-07 Online:2021-10-28 Published:2021-10-26
  • Contact: ZHANG Ying zhangying@home.ipe.ac.cn
  • Supported by:
    National Science Fund subsidized project

摘要: 金属钒性能特殊,素有“工业味精之称”,在冶金、化工、航空、能源、原子能等领域应用广泛。金属钒属于稀有高熔点活泼金属,其高纯金属制备困难,目前主流的制备方法为铝热还原钒氧化物制备粗钒与粗钒真空熔炼提纯的联合工艺,该法能耗高、钒收率低。基于钒氧化物和钒氯化物的热力学性质,研究者还提出了诸多含钒前驱体还原制备粗钒及粗钒精炼制备高纯钒的方法,具体包括钙热还原、镁热还原、真空碳热还原、硅热还原、碳热还原-氮化热分解、熔盐电解脱氧等粗钒制备方法,及熔盐电解精炼、碘化物热分解、固态电迁移等粗钒精炼方法。本工作对上述粗钒制备及粗钒精炼涉及的十余种方法开展了较全面的综述,论述了这些方法的基本原理、技术特点、效果及问题等,以期为高纯金属钒的新制备技术研发和技术升级提供全面的参考依据。

关键词: 金属钒, 粗钒, 精炼, 热还原, 电解

Abstract: Vanadium metal, known as "industrial monosodium glutamate", is widely used in the fields of metallurgy, chemical engineering, aviation, energy, atomic energy, etc. Vanadium belongs to the rare reactive metals with a high melting point, and its production is difficult and costly. Currently, the main route for the production of high-purity V is the combination of the aluminothermic reduction of vanadium oxide and the vacuum melting purification of the crude V; however, this route is energy-intensive and low-yield. In order to reduce the production cost of metallic vanadium, many approaches to the production of crude vanadium have been proposed based on the thermodynamic stability of vanadium oxides and vanadium chlorides, including calciothermic reduction, magnesiothermic reduction, vacuum carbothermic reduction, silicothermic reduction, carbothermic reduction-nitridation-nitride thermal decomposition, molten salt electrolytic deoxidation, etc. The developed refining approaches includes molten salt electrolytic refining, iodide thermal decomposition, solid-state electro-transport purification, etc. This paper reviews the above methods comprehensively in terms of principles, technical features, effectiveness, and drawbacks. It is expected that this review will provide important guidance for the development and upgrading of the approaches for the production of high-purity V metal. It is believed that the application of vanadium will continue to expand with the achievement of high-end materials, which no doubt promotes the development of high-purity metallic vanadium production industry.

Key words: Vanadium metal, crude vanadium, refining, thermalchemical reduction, electrolysis