欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2021, Vol. 21 ›› Issue (3): 332-340.DOI: 10.12034/j.issn.1009-606X.220096

• 材料工程 • 上一篇    下一篇

太阳盐/钢渣定型复合相变储热材料的制备与性能研究

王 燕1,2, 黄 云1,2*, 姚 华1,2, 徐祥贵1, 黄 巧1,2, 王君雷1,2, 马普生3, 王军生3   

  1. 1. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190 2. 中国科学院大学,北京 100049 3. 鞍钢未来钢铁研究院,北京 102211
  • 收稿日期:2020-03-22 修回日期:2020-05-18 出版日期:2021-03-22 发布日期:2021-03-23
  • 通讯作者: 黄云 yunhuang@ipe.ac.cn
  • 基金资助:
    国家自然科学基金资助项目;多相复杂系统国家重点实验室自主研究课题;国家重点研发计划课题;中国科学院洁净能源先导科技专项

Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage

Yan WANG1,2, Yun HUANG1,2*, Hua YAO1,2, Xianggui XU1, Qiao HUANG1,2, Junlei WANG1,2, Pusheng MA3, Junsheng WANG3   

  1. 1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. Future Iron & Steel Research Institute of Ansteel Group Corporation, Beijing 102211, China
  • Received:2020-03-22 Revised:2020-05-18 Online:2021-03-22 Published:2021-03-23

摘要: 全球范围内的能源短缺和环境污染问题迫使人们积极开发可再生新能源。储热技术是解决新能源不稳定性问题的关键技术。相变材料是重要的储热介质之一。熔盐相变材料因其储热密度高,可操作温度范围广的优势,成为储热材料领域研究的热点。为解决熔盐液相易泄漏、低导热和高成本的问题,选择钢渣为基体材料,制备了太阳盐/钢渣定型复合相变储热材料,并通过扫描电子显微镜(SEM),热重–差示扫描量热法(TG–DSC),闪射法导热仪(LFA)和X射线衍射仪(XRD)对复合材料的微观结构、热性能和化学相容性进行了测试与表征。结果表明,钢渣与熔盐质量比5:5的复合材料定型效果最优。复合材料结构紧密;钢渣与熔盐化学相容性良好;复合材料潜热为64.0 kJ/kg,100~500℃内储热密度为945 kJ/kg,热导率高达2.23 W/(m?K)。太阳盐/钢渣复合相变储热材料不仅有利于储热技术的大规模应用,而且为钢铁工业废弃物回收利用提供了良好的参考,对节约资源、保护环境以及提高经济效益具有重要的意义。

关键词: 相变储热, 钢渣, 定型复合熔盐, 材料制备

Abstract: Renewable energy has been actively developed due to the global energy shortage and environmental pollution. The technology of thermal energy storage (TES) is the key to deal with the instability of new energy. Because of its advantages of high heat storage density and wide operating temperature range, molten salts have attracted extensive attention in the medium and high temperature ranges. A form-stable solar salt/steel slag composite phase change material (PCM) was developed in this work for solving the problems of leakage, poor heat transfer performance and high cost of molten salts. The optimum mass ratio of steel slag and molten salt (solar salt) was obtained as 5:5. The microstructure, thermal property and chemical compatibility of the composites were characterized subsequently by scanning electron microscope (SEM), thermogravimetric–differential scanning calorimeter (TG–DSC), laser flash analysis (LFA) and X-ray diffraction (XRD), respectively. The results showed that there was no leakage as the composite material keeps good shape and compact microstructure. The composite material showed good chemical compatibility between molten salt and steel slag. The latent heat was 64.0 kJ/kg, the thermal energy storage density was 945 kJ/kg (100~500℃) and the thermal conductivity was up to 2.23 W/(m?K). Thus, the developed solar salt/steel slag composite PCM is not only of interest to the large-scale application of thermal energy storage, but also provide an excellent option for waste recycling in steel industry.

Key words: Thermal energy storage, steel slag, Form-stable molten salt composite PCM, preparation of materials