欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2021, Vol. 21 ›› Issue (4): 479-487.DOI: 10.12034/j.issn.1009-606X.220150

• 环境与能源 • 上一篇    下一篇

基于离子凝胶电解质的TiO2(B)@C/CNT//AC准固态锂离子电容器

李伯森1,2, 张家赫1, 杨立鹏1, 李佳佳1, 邢春贤1, 张海涛1,2*   

  1. 1. 中国科学院过程工程研究所,离子液体清洁过程北京市重点实验室,绿色过程与工程重点实验室,北京 100190 2. 中国科学院大学化学工程学院,北京 100049
  • 收稿日期:2020-05-12 修回日期:2020-05-25 出版日期:2021-04-22 发布日期:2021-04-28
  • 通讯作者: 张海涛 htzhang@ipe.ac.cn
  • 基金资助:
    国家重点研发计划新能源汽车专项;MgCl26H2O-Mg(OH)2-MgO技术路线制备高纯镁砂过程基础研究;郑州市科技重大专项

Ionogel electrolyte based TiO2(B)@C/CNT//AC quasi-solid-state lithium-ion capacitors

Bosen LI1,2, Jiahe ZHANG1, Lipeng YANG1, Jiajia LI1, Chunxian XING1, Haitao ZHANG1,2*   

  1. 1. Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-05-12 Revised:2020-05-25 Online:2021-04-22 Published:2021-04-28
  • Contact: Haitao Zhang htzhang@ipe.ac.cn

摘要: 以微波辅助溶剂热法制备多壁碳纳米管负载的碳包覆单斜相二氧化钛纳米复合电极,通过静电纺丝技术制备聚酰亚胺纤维膜,进而制备三元离子凝胶电解质,最后与商业活性炭组装成新型准固态锂离子电容器。结果表明,TiO2(B)@C/CNT纳米复合电极呈现出高可逆容量(291 mAh/g)和高电化学反应动力学特性。PI/[EMIM][BF4]/LiTFSI离子凝胶电解质呈现出高离子电导率和电化学稳定性,其可将锂离子电容器的工作电压拓展至3.8 V。由于电解质中存在离子液体,器件的电化学性能呈现出明显的温度依赖性。准固态锂离子电容器在60℃时最大能量密度和最大功率密度分别为83.1 Wh/kg和18338.1 W/kg。

关键词: 离子凝胶电解质, 静电纺丝, 锂离子电容器, 单斜相二氧化钛, 纳米复合电极

Abstract: Lithium-ion capacitors (LICs) are attracting extensive attentions owing to their high energy density, rapid power output, and excellent cyclability. However, one of the key challenges encountered by LICs is balancing the sluggish kinetics of intercalation electrodes against capacitive electrodes. In this work, a TiO2(B)@C/CNT nanohybrid electrode was synthetized by a microwave-assisted solvothermal method. The nanohybrids exhibited a high reversible capacity of 291 mAh/g and high kinetic characteristics. Subsequently, a polyimide (PI) membrane was prepared by electrospinning technique for the construction of a ternary ionogel electrolyte. The ionogel electrolyte exhibited high ionic conductivity and electrochemical stability. Notably, a quasi-solid-state lithium-ion capacitor (QSLIC) was assembled with TiO2(B)@C/CNT as anode, commercial activated carbon (AC) as cathode and the ionogel electrolyte. It delivered a maximum energy density of 83.1 Wh/kg and a maximum power density of 18338.1 W/kg at 60℃. Moreover, the electrochemical performances of the QSLIC exhibited an obvious temperature dependence.

Key words: ionogel electrolyte, electrospinning, lithium-ion capacitor, bronze TiO2, nanohybrid electrode