过程工程学报 ›› 2021, Vol. 21 ›› Issue (7): 774-785.DOI: 10.12034/j.issn.1009-606X.220229
吴秋莹1,2(), 孔令凯2,3, 徐骥2,4(), 葛蔚2,3,4, 袁绍军1()
收稿日期:
2020-07-20
修回日期:
2020-08-07
出版日期:
2021-07-28
发布日期:
2021-07-27
作者简介:
吴秋莹(1995-),女,四川省资阳市人,硕士研究生,化学工程,E-mail: qywu@ipe.ac.cn;通讯联系人基金资助:
Qiuying WU1,2(), Lingkai KONG2,3, Ji XU2,4(), Wei GE2,3,4, Shaojun YUAN1()
Received:
2020-07-20
Revised:
2020-08-07
Online:
2021-07-28
Published:
2021-07-27
摘要:
气固流态化过程中流体和颗粒分别聚集,形成稀密两相,严重限制其传质效率和反应速率的提高。针对此问题,本工作设计了一种中空多孔结构的催化剂颗粒,通过模拟方法研究该颗粒对稀密两相气相传质与反应的影响,及其在稀密相间转换的时间尺度。结果表明,一定的流动强度时,在颗粒稀密相转换的时间尺度内,中空多孔结构的颗粒能够有效地在稀相存储反应气体,并在密相释放,为密相提供额外的反应气体,增强体系的整体反应效率。当催化反应速率高于传质速率时,在所研究的流动条件下中空多孔颗粒体系的反应效率比实心球形颗粒体系高出26.92%~29.55%。可以预见在稀密相分布更广的大型气固流化床反应器中,中空多孔结构的催化剂颗粒能够更为有效地提高反应器的整体效率。
中图分类号:
吴秋莹, 孔令凯, 徐骥, 葛蔚, 袁绍军. 气固两相流内中空多孔催化剂性能的数值模拟[J]. 过程工程学报, 2021, 21(7): 774-785.
Qiuying WU, Lingkai KONG, Ji XU, Wei GE, Shaojun YUAN. Numerical simulation of hollow catalyst with pores in gas-solid reaction system[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 774-785.
Parameter | Value |
---|---|
Particle diameter/m | 5.0×10-3 |
Grid size/m | 5.0×10-4~2.0×10-3 |
Time step/s | 2.0×10-5~5.0×10-5 |
Inlet mass fraction of A | 1.0 |
Inlet mass fraction of B | 0.0 |
Inlet mass fraction of I | 0.0 |
表1 模拟参数
Table 1 Parameters of numerical simulation
Parameter | Value |
---|---|
Particle diameter/m | 5.0×10-3 |
Grid size/m | 5.0×10-4~2.0×10-3 |
Time step/s | 2.0×10-5~5.0×10-5 |
Inlet mass fraction of A | 1.0 |
Inlet mass fraction of B | 0.0 |
Inlet mass fraction of I | 0.0 |
Res | Frössling | Ranz-Marshall | Lu et al[ | Simulation |
---|---|---|---|---|
10 | 3.75 | 3.90 | 3.68 | 3.80 |
20 | 4.47 | 4.68 | 4.51 | 4.79 |
40 | 5.49 | 5.79 | 5.67 | 6.14 |
60 | 6.28 | 6.65 | 6.56 | 7.16 |
100 | 7.52 | 8.00 | 7.94 | 8.51 |
200 | 9.81 | 10.49 | 10.46 | 11.31 |
表2 单个实心球形催化剂的颗粒舍伍德数
Table 2 Particle Sherwood number (Shs) of the single solid spherical catalyst
Res | Frössling | Ranz-Marshall | Lu et al[ | Simulation |
---|---|---|---|---|
10 | 3.75 | 3.90 | 3.68 | 3.80 |
20 | 4.47 | 4.68 | 4.51 | 4.79 |
40 | 5.49 | 5.79 | 5.67 | 6.14 |
60 | 6.28 | 6.65 | 6.56 | 7.16 |
100 | 7.52 | 8.00 | 7.94 | 8.51 |
200 | 9.81 | 10.49 | 10.46 | 11.31 |
Parameter | Value |
---|---|
Particle diameter/m | 1.0×10-4 |
Grid size/m | 1.0×10-5~5.0×10-5 |
Time step/s | 1.0×10-7 |
Inlet mass fraction of A | 0.9 |
Inlet mass fraction of B | 0.0 |
Inlet mass fraction of I | 0.1 |
表3 稀相体系模拟参数设置
Table 3 Parameters of numerical simulation in dilute phase
Parameter | Value |
---|---|
Particle diameter/m | 1.0×10-4 |
Grid size/m | 1.0×10-5~5.0×10-5 |
Time step/s | 1.0×10-7 |
Inlet mass fraction of A | 0.9 |
Inlet mass fraction of B | 0.0 |
Inlet mass fraction of I | 0.1 |
Parameter | Value |
---|---|
Particle diameter/m | 1.0×10-4 |
Grid size/m | 1.0×10-5~5.0×10-5 |
Time step/s | 1.0×10-7 |
Inlet mass fraction of A | 0.1 |
Inlet mass fraction of B | 0.0 |
Inlet mass fraction of I | 0.9 |
表4 颗粒聚团体系模拟参数设置
Table 4 Parameter of numerical simulation in dense phase
Parameter | Value |
---|---|
Particle diameter/m | 1.0×10-4 |
Grid size/m | 1.0×10-5~5.0×10-5 |
Time step/s | 1.0×10-7 |
Inlet mass fraction of A | 0.1 |
Inlet mass fraction of B | 0.0 |
Inlet mass fraction of I | 0.9 |
图11 颗粒聚团体系内气相速度分布(Res=10):(a) 实心球形颗粒;(b) 中空多孔颗粒
Fig.11 Velocity distributions in particle cluster system (Res=10): (a) solid spherical particle; (b) hollow porous particle
图12 颗粒聚团体系中产物B的质量分数分布(Res=10):(a) 实心球形颗粒;(b) 中空多孔颗粒
Fig.12 The mass fractions of product B in particle cluster system (Res=10): (a) solid spherical particle; (b) hollow porous particle
图13 颗粒聚团体系中气体A的质量分数分布(Res=10):(a) 实心球形颗粒;(b) 中空多孔颗粒
Fig.13 The mass fractions of reactant A in particle cluster system (Res=10): (a) solid spherical particle; (b) hollow porous particle
1 | 郭慕孙, 李洪钟. 流态化手册 [M]. 北京: 化学工业出版社, 2008: 150-159. |
Kwauk M, Li H Z. Handbook of fluidization [M]. Beijing: Chemical Industry Press, 2008: 150-159. | |
2 | 金涌, 祝京旭, 汪展文. 流态化工程原理 [M]. 北京: 清华大学出版社, 2001: 2-14. |
Jin Y, Zhu J X, Wang Z W. Fluidization engineering principles [M]. Beijing: Tsinghua Univeristy Press, 2001: 2-14. | |
3 | 李洪钟, 郭慕孙. 回眸与展望流态化科学与技术 [J]. 化工学报, 2013, 64(1): 52-60. |
Li H Z, Kwauk M. Review and prospect of fluidization science and technology [J]. CIESC Journal, 2013, 64(1): 52-60. | |
4 | Amjadi O, Tahmasebpoor M. Improving fluidization behavior of cohesive Ca(OH)2 adsorbent using hydrophilic silica nanoparticles: parametric investigation [J]. Particuology, 2018, 40: 52-61. |
5 | Kashyap M, Tadiboyina M R, Okolo C, et al. Improving circulating fluidized bed dehydrogenation technology through optimization of fluidization [J]. Particuology, 2020, 50: 127-134. |
6 | Yu Y, Zhang C, Zhang Z, et al. Characterizing the catalyst fluidization with field synergy to improve the amine absorption for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1608-1617. |
7 | Zhou C, Fan X, Duan C, et al. A method to improve fluidization quality in gas-solid fluidized bed for fine coal beneficiation [J]. Particuology, 2019, 43: 181-192. |
8 | 李洪钟, 郭慕孙. 气固流态化的散式化 [M]. 北京: 化学工业出版社, 2002: 38-52. |
Li H Z, Kwauk M. Particulatization of gas-solid fluidization [M]. Beijing: Chemical Industry Press, 2002: 38-52. | |
9 | Liu B, Zhang X, Wang L, et al. Fluidization of non-spherical particles: sphericity, Zingg factor and other fluidization parameters [J]. Particuology, 2008, 6(2): 125-129. |
10 | Hilton J E, Mason L R, Cleary P W. Dynamics of gas-solid fluidised beds with non-spherical particle geometry [J]. Chemical Engineering Science, 2010, 65(5): 1584-1596. |
11 | Nan W, Wang Y, Wang J. Numerical analysis on the fluidization dynamics of rodlike particles [J]. Advanced Powder Technology, 2016, 27(5): 2265-2276. |
12 | Mandø M, Rosendahl L. On the motion of non-spherical particles at high Reynolds number [J]. Powder Technology, 2010, 202(1/2/3): 1-13. |
13 | Li X, Visaveliya N, Hafermann L, et al. Hierarchically structured particles for micro flow catalysis [J]. Chemical Engineering Journal, 2017, 326: 1058-1065. |
14 | Cheng Q, Tian Y, Lyu S, et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis [J]. Nature Communications, 2018, 9(1): 1-9. |
15 | Wang X, Li M, Cao C, et al. Surfactant-free palladium nanoparticles encapsulated in ZIF-8 hollow nanospheres for size-selective catalysis in liquid-phase solution [J]. ChemCatChem, 2016, 8(20): 3224-3228. |
16 | Yao D, Wang Y, Katherine H L, et al. Balancing effect between adsorption and diffusion on catalytic performance inside hollow nanostructured catalyst [J]. ACS Catalysis, 2019, 9(4): 2969-2976. |
17 | 邹海魁, 初广文, 向阳, 等. 超重力反应强化技术最新进展 [J]. 化工学报, 2015, 66(8): 2805-2809. |
Zou H K, Chu G W, Xiang Y, et al. New progress of HIGEE reaction technology [J]. Journal of Chemical Industry and Engineering, 2015, 66(8): 2805-2809. | |
18 | Nakamura H, Tokuda T, Iwasaki T, et al. Numerical analysis of particle mixing in a rotating fluidized bed [J]. Chemical Engineering Science, 2007, 62(11): 3043-3056. |
19 | De Broqueville A, De Wilde J. Numerical investigation of gas-solid heat transfer in rotating fluidized beds in a static geometry [J]. Chemical Engineering Science, 2009, 64(6): 1232-1248. |
20 | De Wilde J, De Broqueville A. Experimental investigation of a rotating fluidized bed in a static geometry [J]. Powder Technology, 2008, 183(3): 426-435. |
21 | 威尔特 J R, 威克斯 C E, 威尔逊 R E, 等. 动量、热量和质量传递原理 [M]. 马紫峰, 吴卫生, 译. 第4版. 北京: 化学工业出版社, 2005: 403-463. |
Welty J R, Wicks C E, Wilson R E, et al. Fundamentals of momentum, heat and mass transfer [M]. Ma Z F, Wu W S, trans. 4th Ed. Beijing: Chemical Industry Press, 2005: 403-463. | |
22 | Lu J, Das S, Peters E A J F, et al. Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems with surface reactions [J]. Chemical Engineering Science, 2018, 176: 1-18. |
23 | Lu B, Luo H, Li H, et al. Speeding up CFD simulation of fluidized bed reactor for MTO by coupling CRE model [J]. Chemical Engineering Science, 2016, 143: 341-350. |
24 | Carlos Varas A E, Peters E A J F, Kuipers J A M. Computational fluid dynamics-discrete element method (CFD-DEM) study of mass-transfer mechanisms in riser flow [J]. Industrial & Engineering Chemistry, 2017, 56(19): 5558-5572. |
25 | Das S, Deen N G, Kuipers J A M. A DNS study of flow and heat transfer through slender fixed-bed reactors randomly packed with spherical particles [J]. Chemical Engineering Science, 2017, 160: 1-19. |
26 | Deen N G, Kuipers J A M. Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems [J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11266-11274. |
27 | Lu J, Peters E A J F, Kuipers J A M. Direct numerical simulation of fluid flow and mass transfer in particle clusters [J]. Industrial & Engineering Chemistry Research, 2018, 57(13): 4664-4679. |
28 | Lu J, Peters E A J F, Kuipers J A M. Direct numerical simulation of fluid flow and dependently coupled heat and mass transfer in fluid-particle systems [J]. Chemical Engineering Science, 2019, 204: 203-219. |
29 | Lu J, Tan M D, Peters E A J F, et al. Direct numerical simulation of reactive fluid-particle systems using an immersed boundary method [J]. Industrial & Engineering Chemistry Research, 2018, 57(45): 15565-15578. |
30 | Van Der Hoef M A, Van Sint Annaland M, Deen N G, et al. Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy [J]. Annual Review of Fluid Mechanics, 2008, 40(1): 47-70. |
31 | Green D W, Perry R H. Perry's chemical engineers' handbook [M]. 8th Ed. New York: The McGraw-Hill Companies, 2002: 746-755. |
32 | Li J, Agarwal R K, Zhou L, et al. Investigation of a bubbling fluidized bed methanation reactor by using CFD-DEM and approximate image processing method [J]. Chemical Engineering Science, 2019, 207: 1107-1120. |
33 | Christoph K, Christoph G, Alice H, et al. Models, algorithms and validation for opensource DEM and CFD-DEM [J]. Progress in Computational Fluid Dynamics, 2012, 12: 140-152. |
34 | Chu K W, Wang B, Xu D L, et al. CFD-DEM simulation of the gas-solid flow in a cyclone separator [J]. Chemical Engineering Science, 2011, 66(5): 834-847. |
35 | Wu C, Cheng Y, Ding Y, et al. CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process [J]. Chemical Engineering Science, 2010, 65(1): 542-549. |
36 | Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions [M]. New York: Academic Press, 1994: 421-446. |
37 | Tian T, Wang H, Ge W, et al. Detecting particle clusters in particle-fluid systems by a density based method [J]. Communications in Computational Physics, 2019, 26(5): 1617-1630. |
38 | Lu B, Zhang J, Luo H, et al. Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors [J]. Chemical Engineering Science, 2017, 171: 244-255. |
39 | Tian P, Wei Y, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization [J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
40 | Ying L, Yuan X, Ye M, et al. A seven lumped kinetic model for industrial catalyst in DMTO process [J]. Chemical Engineering Research and Design, 2015, 100: 179-191. |
41 | Zhao Y, Li H, Ye M, et al. 3D numerical simulation of a large scale MTO fluidized bed reactor [J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11354-11364. |
42 | Das A K, Baudrez E, Marin G B, et al. Three-dimensional simulation of a fluid catalytic cracking riser reactor [J]. Industrial & Engineering Chemistry Research, 2003, 42(12): 2602-2617. |
43 | Trujillo W R, De Wilde J. Computational fluid dynamics simulation of fluid catalytic cracking in a rotating fluidized bed in a static geometry [J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5288-5298. |
[1] | 高华鑫 刘雪东 张炜 查晓峰 吕圣男 刘佳君 吕开新. 新型热解炉燃烧室流热固耦合仿真与结构优化[J]. 过程工程学报, 2022, 22(9): 1203-1212. |
[2] | 田玉龙 杨秀山 孔行健 许德华 张志业. 磷石膏颗粒湍动流化特性实验及模拟[J]. 过程工程学报, 2022, 22(9): 1224-1231. |
[3] | 熊桂龙 苏文康 王安奇 王一泽. 颗粒形状对包衣设备内药片颗粒运动特性影响的数值模拟[J]. 过程工程学报, 2022, 22(9): 1232-1243. |
[4] | 张建伟 牛聚超 董鑫 冯颖. 撞击流反应器流场数值模拟及其混合性能优化[J]. 过程工程学报, 2022, 22(9): 1244-1252. |
[5] | 张静 王胜昌 田志国 吴剑华 龚斌. 周向多入口凹壁面切向射流流动特性分析[J]. 过程工程学报, 2022, 22(8): 1030-1039. |
[6] | 靳波 张亚新. 颗粒尺度下混合催化剂床层中CO2加氢反应体系数值模拟[J]. 过程工程学报, 2022, 22(8): 1040-1052. |
[7] | 段怡如 李宝宽 黄雪驰 刘中秋 柴玉莹. 电渣重熔H13模具钢过程碳偏析的模拟研究[J]. 过程工程学报, 2022, 22(8): 1074-1084. |
[8] | 王翠华 李光瑜 苏方正 龚斌 吴剑华. 螺旋套管换热器壳程流体湍流换热热力性能数值研究[J]. 过程工程学报, 2022, 22(7): 935-943. |
[9] | 张炜 刘文津 张玉明 李家州 岳君容. 高温加压微型流化床内脉冲气射流扰动的数值模拟[J]. 过程工程学报, 2022, 22(7): 944-953. |
[10] | 李倩 吉华 冯东林 张子扬 段宗幸. 孔分布对多孔孔板流场和噪声的影响[J]. 过程工程学报, 2022, 22(5): 601-611. |
[11] | 李雅侠 许鹏宇 韩泽民 李运杭 崔峰源 张静. 矩形截面高宽比对射流强化螺旋通道传热性能的影响[J]. 过程工程学报, 2022, 22(5): 612-621. |
[12] | 胡涛 向星 葛蔚 王利民. 基于多GPU并行格子Boltzmann方法的方管湍流模拟[J]. 过程工程学报, 2022, 22(3): 318-328. |
[13] | 周里群 王智明 汪振南 李玉平 黄治中. 三级活塞推料离心机数值模拟与操作参数优化[J]. 过程工程学报, 2022, 22(3): 329-337. |
[14] | 郑淑国 朱苗勇. 250 t转炉二次燃烧氧枪射流特性[J]. 过程工程学报, 2022, 22(10): 1438-1446. |
[15] | 刘彪 姚秀颖 孟振亮 刘梦溪. 高低并列式重油催化裂化汽提器挡板的结构优化[J]. 过程工程学报, 2022, 22(1): 22-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||