过程工程学报 ›› 2021, Vol. 21 ›› Issue (7): 786-793.DOI: 10.12034/j.issn.1009-606X.220206
收稿日期:
2020-06-28
修回日期:
2020-08-21
出版日期:
2021-07-28
发布日期:
2021-07-27
通讯作者:
鲁进利 1280350428@qq.com;lujinli@sina.cn
作者简介:
吴丽(1994-),女,安徽省安庆市人,硕士研究生,供热、供燃气、通风及空调工程专业,E-mail: 1280350428@qq.com基金资助:
Li WU1(), Jie HE1, Jinli LU1(), Yafang HAN1, Ze HONG2
Received:
2020-06-28
Revised:
2020-08-21
Online:
2021-07-28
Published:
2021-07-27
Contact:
Jinli LU 1280350428@qq.com;lujinli@sina.cn
摘要:
将相变储能技术应用于电热水器,并通过添加石墨纳米颗粒改善相变材料的导热特性,对其储能过程进行调节,可以起到“移峰填谷”的作用。建立了四种不同结构的电热水器三维模型,模拟了电热水器内部速度场与温度场分布特性。考察了进出口水管结构、电加热管布置方式、保温层结构等因素对热水器内部流场及传热特性的影响,研究了不同储能层厚度对电热水器储能的影响。结果表明,水平加热管与垂直加热管相比,加热过程中加热效率提高了2.2%;进水管管径增大1.5倍,热水输出率提升了17.9%;加入相变材料可在相同保温时间内(36 h)使水温最大提高10.6%。
中图分类号:
吴丽, 何杰, 鲁进利, 韩亚芳, 洪泽. 电热水器内部结构优化及储能特性研究[J]. 过程工程学报, 2021, 21(7): 786-793.
Li WU, Jie HE, Jinli LU, Yafang HAN, Ze HONG. Research on internal structure optimization and energy storage characteristics of electric water heater[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 786-793.
Case | Structure |
---|---|
1 | Vertical heating tube+normal inlet pipe diameter |
2 | Horizontal heating tube+normal inlet pipe diameter |
3 | Vertical heating tube+1.5 times diameter of the inlet pipe |
4 | Horizontal heating tube+1.5 times diameter of the inlet pipe |
表1 不同结构电热水器
Table 1 Different structure electric water heaters
Case | Structure |
---|---|
1 | Vertical heating tube+normal inlet pipe diameter |
2 | Horizontal heating tube+normal inlet pipe diameter |
3 | Vertical heating tube+1.5 times diameter of the inlet pipe |
4 | Horizontal heating tube+1.5 times diameter of the inlet pipe |
Material | Phase change temperature/℃ | Latent heat/(kJ/kg) | Specific heat/ [J/(kg·K)] | Heat conductivity coefficient/[W/(m·K)] | Density/(kg/m3) |
---|---|---|---|---|---|
Polyurethane | - | - | 1380 | 0.024 | 40 |
Paraffine | 51~57 | 170 | 2100 | 0.25 | 760 |
Paraffine+10wt% Graphite[ | 48~50 | 158.5 | 2235 | 0.94 | 877.5 |
表2 保温材料的物性参数
Table 2 Physical properties of thermal insulation materials
Material | Phase change temperature/℃ | Latent heat/(kJ/kg) | Specific heat/ [J/(kg·K)] | Heat conductivity coefficient/[W/(m·K)] | Density/(kg/m3) |
---|---|---|---|---|---|
Polyurethane | - | - | 1380 | 0.024 | 40 |
Paraffine | 51~57 | 170 | 2100 | 0.25 | 760 |
Paraffine+10wt% Graphite[ | 48~50 | 158.5 | 2235 | 0.94 | 877.5 |
Parameter | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
Maximum temperature/℃ | 68.72 | 68.56 | 68.86 | 68.28 |
Minimum temperature/℃ | 48.02 | 47.99 | 48.47 | 48.45 |
Time/s | 370 | 390 | 430 | 460 |
Water quality/kg | 30.25 | 31.89 | 35.16 | 37.62 |
Water temperature/℃ | 63.53 | 63.49 | 63.82 | 63.50 |
Shutdown temperature/℃ | 63.27 | 63.35 | 63.27 | 63.35 |
Hot water output rate/% | 62.00 | 65.20 | 72.48 | 76.90 |
表3 不同方案热水输出率
Table 3 The hot water output rate under different schemes
Parameter | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
Maximum temperature/℃ | 68.72 | 68.56 | 68.86 | 68.28 |
Minimum temperature/℃ | 48.02 | 47.99 | 48.47 | 48.45 |
Time/s | 370 | 390 | 430 | 460 |
Water quality/kg | 30.25 | 31.89 | 35.16 | 37.62 |
Water temperature/℃ | 63.53 | 63.49 | 63.82 | 63.50 |
Shutdown temperature/℃ | 63.27 | 63.35 | 63.27 | 63.35 |
Hot water output rate/% | 62.00 | 65.20 | 72.48 | 76.90 |
图10 不同相变层厚度对保温过程中热水器平均水温的影响
Fig.10 The influence of different thicknesses of PCM on the average water temperature of electric water heater during heat preservation process
1 | 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告 [M]. 北京: 中国建筑工业出版社, 2018: 7-9. |
Building Energy Conservation Research Center of Tsinghua University. 2018 Annual report on China building energy efficiency [M]. Beijing: China Aechitecture & Building Press, 2018: 7-9. | |
2 | 牛纪德, 周遵凯, 杨先亮, 等. 电热水器运行方式与能耗的理论分析 [J]. 山西建筑, 2012, 38(26): 213-214. |
Niu J D, Zhou Z K, Yang X L, et al. Theoretical analysis of operation mode and energy consumption of electric water heaters [J]. Shanxi Architecture, 2012, 38(26): 213-214. | |
3 | 王烨, 宋荣飞, 胡悦, 等. 内置隔板开孔方式对太阳能蓄热水箱热分层的影响 [J]. 储能科学与技术, 2019, 8(5): 897-903. |
Wang Y, Song R F, Hu Y, et al. Effect of obstacles with different opening means on thermal stratification in hot water storage tanks [J]. Energy Storage Science and Technology, 2019, 8(5): 897-903. | |
4 | Shao S, Shi W, Li X, et al. A new inverter heat pump operated all year round with domestic hot water [J]. Energy Conversion and Management, 2004, 45(13/14): 2255-2268. |
5 | Kim M, Kim M S, Chung J D. Transient thermal behavior of a water heater system driven by a heat pump [J]. International Journal of Refrigeration, 2004, 27(4): 415-421. |
6 | De Césaro Oliveski R, Krenzinger A, Vielmo H A. Comparison between models for the simulation of hot water storage tanks [J]. Solar Energy, 2003, 75(2): 121-134. |
7 | 李同, 陶汉中, 蒋川. 真空管型太阳热水器传热特性的数值分析 [J]. 太阳能学报, 2017, 38(5): 1247-1253. |
Li T, Tao H Z, Jiang C. Numerical analysis on heat transfer characteristic of evacuated tube solar water heater [J]. Acta Energiae Solaris Sinica, 2017, 38(5): 1247-1253. | |
8 | 王登甲, 刘艳峰. 太阳能热水采暖蓄热水箱温度分层分析 [J]. 建筑热能通风空调, 2010, 29(1): 16-19. |
Wang D J, Liu Y F. Temperature stratification analysis of solar hot water heating storage tank [J]. Building Energy & Environment, 2010, 29(1): 16-19. | |
9 | 黄建春, 李光正, 江立新, 等. 封闭腔内层流自然对流换热过渡层数值研究 [J]. 华中科技大学学报, 2001, (5): 51-53. |
Huang J C, Li G Z, Jiang L X, et al. Numerical study on the flow transition in laminar natural convection flow in a square cavity [J].Journal of Huazhong University of Science and Technology, 2001, (5): 51-53. | |
10 | 鲁进利, 吕勇军, 韩亚芳, 等. 细小槽道换热器内相变微胶囊悬浮液对流传热DPM模拟 [J]. 过程工程学报, 2018, 18(5): 951-956. |
Lu J L, Lü Y J, Han Y F, et al. Simulation on convective heat transfer of MPCMS in minichannel heat exchanger based on DPM model [J]. The Chinese Journal of Process Engineering, 2018, 18(5): 951-956. | |
11 | Ma X C, Liu Y J, Liu H, et al. Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector [J]. Solar Energy Materials and Solar Cells, 2018, 188: 73-80. |
12 | 张宇, 田丽亭, 岳小棚, 等. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析 [J]. 过程工程学报, 2020, 20(3): 276-284. |
Zhang Y, Tian L T, Yue X P, et al. Thermal mechanical characteristics analysis of trough solar collector with microencapsulated phase change suspensions [J]. The Chinese Journal of Process Engineering, 2020, 20(3): 276-284. | |
13 | 鲁进利, 张汪林, 韩亚芳, 等. 细小圆管内Micro-PCMS紊流对流传热特性的CFD-DPM模拟 [J]. 过程工程学报, 2015, 15(5): 758-763. |
Lu J L, Zhang W L, Han Y F, et al. CDF-DPM simulation on characteristics of turbulent flow and heat transfer for micro-PCMS in mini-pipe [J]. The Chinese Journal of Process Engineering, 2015, 15(5): 758-763. | |
14 | 邹得球, 詹建, 李乐园, 等. 热水器用相变储热材料的研究进展 [J]. 化工进展, 2017, 36(1): 268-273. |
Zhou D Q, Zhan J, Li L Y, et al. Research progress of phase change thermal energy storage materials in water heater [J]. Chemical Industry and Engineering Progress, 2017, 36(1): 268-273. | |
15 | Alexios P, Sarvenaz S, Vladimir P, et al. Evacuated tube solar collectors integrated with phase change materials [J]. Solar Energy, 2016, 129: 10-19. |
16 | Miqdam T C, Kazem H A. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM) [J]. Case Studies in Thermal Engineering, 2015, 5: 151-159. |
17 | Wang W, He S, Guo S, et al. A combined experimental and simulation study on charging process of erythritol-HTO direct-blending based energy storage system [J]. Energy Conversion and Management, 2014, 83: 306-313. |
18 | Summers E K, Antar M A, John H L V, et al. Design and optimization of an air heating solar collector with integrated phase change material energy storage for use in humidification-dehumidification desalination [J]. Solar Energy, 2012, 86: 3417-3429. |
19 | 巫江虹, 杨兆光, 吴青昊, 等. 热泵热水器用相变蓄热材料的性能研究 [J]. 太阳能学报, 2011, 32(5): 674-678. |
Wu J H, Yang Z G, Wu Q H, et al. Experimental study on phase-change performance of thermal storage materials in heat pump water heater [J]. Acta Energiae Solaris Sinica, 2011, 32(5): 674-678. | |
20 | 周楚, 陈华, 史德福, 等. 相变蓄热式热泵热水器性能实验研究 [J]. 建筑科学, 2014, 30(4): 5-9. |
Zhou C, Chen H, Shi D F, et al. Experimental study on performance of phase-transition thermal-storage heat pump water heater [J]. Building Science, 2014, 30(4): 5-9. | |
21 | 吴淑英. 纳米复合蓄热材料强化相变传热实验与数值模拟研究 [D]. 广州: 华南理工大学, 2010: 79-95. |
Wu S Y. Enhanced heat transfer experimental and simulation research of nanocomposite phase change materials [D]. Guangzhou: South China University of Technology, 2010: 79-95. | |
22 | 冉茂宇. 非出水时段电热水器加热时间与能耗的预测模型 [J]. 华侨大学学报(自然科学版), 2016, 37(2): 247-251. |
Ran M Y. Preditction model of the heating time and energy consumption of electric water heater during the un-draining period [J]. Journal of Huaqiao University (Natural Science), 2016, 37(2): 247-251. |
[1] | 高华鑫 刘雪东 张炜 查晓峰 吕圣男 刘佳君 吕开新. 新型热解炉燃烧室流热固耦合仿真与结构优化[J]. 过程工程学报, 2022, 22(9): 1203-1212. |
[2] | 田玉龙 杨秀山 孔行健 许德华 张志业. 磷石膏颗粒湍动流化特性实验及模拟[J]. 过程工程学报, 2022, 22(9): 1224-1231. |
[3] | 熊桂龙 苏文康 王安奇 王一泽. 颗粒形状对包衣设备内药片颗粒运动特性影响的数值模拟[J]. 过程工程学报, 2022, 22(9): 1232-1243. |
[4] | 张建伟 牛聚超 董鑫 冯颖. 撞击流反应器流场数值模拟及其混合性能优化[J]. 过程工程学报, 2022, 22(9): 1244-1252. |
[5] | 张静 王胜昌 田志国 吴剑华 龚斌. 周向多入口凹壁面切向射流流动特性分析[J]. 过程工程学报, 2022, 22(8): 1030-1039. |
[6] | 靳波 张亚新. 颗粒尺度下混合催化剂床层中CO2加氢反应体系数值模拟[J]. 过程工程学报, 2022, 22(8): 1040-1052. |
[7] | 段怡如 李宝宽 黄雪驰 刘中秋 柴玉莹. 电渣重熔H13模具钢过程碳偏析的模拟研究[J]. 过程工程学报, 2022, 22(8): 1074-1084. |
[8] | 王翠华 李光瑜 苏方正 龚斌 吴剑华. 螺旋套管换热器壳程流体湍流换热热力性能数值研究[J]. 过程工程学报, 2022, 22(7): 935-943. |
[9] | 张炜 刘文津 张玉明 李家州 岳君容. 高温加压微型流化床内脉冲气射流扰动的数值模拟[J]. 过程工程学报, 2022, 22(7): 944-953. |
[10] | 李倩 吉华 冯东林 张子扬 段宗幸. 孔分布对多孔孔板流场和噪声的影响[J]. 过程工程学报, 2022, 22(5): 601-611. |
[11] | 李雅侠 许鹏宇 韩泽民 李运杭 崔峰源 张静. 矩形截面高宽比对射流强化螺旋通道传热性能的影响[J]. 过程工程学报, 2022, 22(5): 612-621. |
[12] | 胡涛 向星 葛蔚 王利民. 基于多GPU并行格子Boltzmann方法的方管湍流模拟[J]. 过程工程学报, 2022, 22(3): 318-328. |
[13] | 周里群 王智明 汪振南 李玉平 黄治中. 三级活塞推料离心机数值模拟与操作参数优化[J]. 过程工程学报, 2022, 22(3): 329-337. |
[14] | 郑淑国 朱苗勇. 250 t转炉二次燃烧氧枪射流特性[J]. 过程工程学报, 2022, 22(10): 1438-1446. |
[15] | 刘彪 姚秀颖 孟振亮 刘梦溪. 高低并列式重油催化裂化汽提器挡板的结构优化[J]. 过程工程学报, 2022, 22(1): 22-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||