过程工程学报 ›› 2021, Vol. 21 ›› Issue (7): 817-826.DOI: 10.12034/j.issn.1009-606X.220178
收稿日期:
2020-06-09
修回日期:
2020-08-10
出版日期:
2021-07-28
发布日期:
2021-07-27
通讯作者:
李敏敏 Liangwmhpu@126.com;zhiyalmm@126.com
作者简介:
梁为民(1967-),男,河北省承德市人,博士,教授,主要从事爆破工程与岩土工程方面的教学和研究工作,E-mail: Liangwmhpu@126.com基金资助:
Weimin LIANG(), Heng LIU, Minmin LI(), Gaowei YUE
Received:
2020-06-09
Revised:
2020-08-10
Online:
2021-07-28
Published:
2021-07-27
Contact:
Minmin LI Liangwmhpu@126.com;zhiyalmm@126.com
摘要:
井下深孔爆破致裂是提高低渗煤层渗透率的重要措施之一,但由于煤层层理因素影响,在不同方向上的爆破致裂效果存在显著差异。采用分离式霍布金森压杆实验装置,对从垂直于层理方向和平行于层理方向进行取芯的煤样,分别进行冲击荷载为0.1, 0.15, 0.2, 0.3, 0.5 MPa的单/三轴SHPB冲击实验,分析结构异性煤体的冲击动力学性能。结果表明,煤样在不同冲击作用下,其单、三轴应力-应变曲线趋势相同,且其峰值应力、平均应变率随冲击荷载增大而增长趋势相同,其中峰值应力与冲击荷载符合指数关系,平均应变率与冲击荷载呈线性关系,相同冲击荷载下垂直于层理方向煤样的峰值应力、平均应变率相较于平行于层理方向煤样有所提升;进行三轴SHPB冲击时,在轴、围压对煤样约束作用下,其峰值应力、平均应变率相较于单轴情况下均有所提高,且在冲击荷载为0.15~0.2 MPa时峰值应力增幅最大,增大约50%,垂直于层理方向的动力学性能改变相较于平行于层理方向更明显。
中图分类号:
梁为民, 刘恒, 李敏敏, 岳高伟. 结构异性煤体单轴/三轴冲击动力学性能研究[J]. 过程工程学报, 2021, 21(7): 817-826.
Weimin LIANG, Heng LIU, Minmin LI, Gaowei YUE. Study on uniaxial/triaxial impact dynamic properties of structurally heterogeneous coal[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 817-826.
Direction | Compressive strength /MPa | Tensile strength /MPa | Density /(g/cm3) | Internal friction angle/o | Stiffness coefficient | Elastic modulus /GPa | Poisson's ratio |
---|---|---|---|---|---|---|---|
C | 9.18 | 3.4 | 1.324 | 82.314 | 0.96 | 2.987 | 0.32 |
P | 6.51 | 2.97 |
表1 煤样基本力学参数
Table 1 Basic mechanical parameters of coal samples
Direction | Compressive strength /MPa | Tensile strength /MPa | Density /(g/cm3) | Internal friction angle/o | Stiffness coefficient | Elastic modulus /GPa | Poisson's ratio |
---|---|---|---|---|---|---|---|
C | 9.18 | 3.4 | 1.324 | 82.314 | 0.96 | 2.987 | 0.32 |
P | 6.51 | 2.97 |
Industrial analysis | Maceral | Vitrinite reflectance/% | ||||
---|---|---|---|---|---|---|
Ash/% | Volatile/% | Fixed carbon/% | Brightness group/% | Vitrinite/% | Inertinite/% | 2.759 |
10.21 | 8.71 | 78.12 | 2.8 | 95 | 2.2 |
表2 煤样基本成分参数
Table 2 Basic composition parameters of coal samples
Industrial analysis | Maceral | Vitrinite reflectance/% | ||||
---|---|---|---|---|---|---|
Ash/% | Volatile/% | Fixed carbon/% | Brightness group/% | Vitrinite/% | Inertinite/% | 2.759 |
10.21 | 8.71 | 78.12 | 2.8 | 95 | 2.2 |
Impact pressure/MPa | Uniaxial impact | Triaxial impact | ||||||
---|---|---|---|---|---|---|---|---|
Vertical direction | Parallel direction | Vertical direction | Parallel direction | |||||
Coal number | Velocity/(m/s) | Coal number | Velocity/(m/s) | Coal number | Velocity/(m/s) | Coal number | Velocity/(m/s) | |
0.1 | DC1-1 | 2.341 | DP1-1 | 2.452 | SC1-1 | 2.417 | SP1-1 | 2.451 |
DC1-2 | 2.367 | DP1-2 | 2.433 | SC1-2 | 2.254 | SP1-2 | 2.354 | |
DC1-3 | 2.412 | DP1-3 | 2.328 | SC1-3 | 2.440 | SP1-3 | 2.481 | |
0.15 | DC2-1 | 3.497 | DP2-1 | 3.542 | SC2-1 | 3.422 | SP2-1 | 3.685 |
DC2-2 | 3.307 | DP2-2 | 3.478 | SC2-2 | 3.697 | SP2-2 | 3.338 | |
DC2-3 | 3.685 | DP2-3 | 3.438 | SC2-3 | 3.542 | SP2-3 | 3.478 | |
0.2 | DC3-1 | 4.068 | DP3-1 | 4.083 | SC3-1 | 4.112 | SP3-1 | 4.072 |
DC3-2 | 4.023 | DP3-2 | 4.103 | SC3-2 | 3.878 | SP3-2 | 3.984 | |
DC3-3 | 4.047 | DP3-3 | 3.988 | SC3-3 | 3.957 | SP3-3 | 3.994 | |
0.3 | DC4-1 | 5.376 | DP4-1 | 5.457 | SC4-1 | 5.411 | SP4-1 | 5.389 |
DC4-2 | 5.379 | DP4-2 | 5.398 | SC4-2 | 5.389 | SP4-2 | 5.428 | |
DC4-3 | 5.465 | DP4-3 | 5.273 | SC4-3 | 5.411 | SP4-3 | 5.394 | |
0.5 | DC5-1 | 7.156 | DP5-1 | 7.297 | SC5-1 | 7.438 | SP5-1 | 7.378 |
DC5-2 | 7.556 | DP5-2 | 7.334 | SC5-2 | 7.274 | SP5-2 | 7.298 | |
DC5-3 | 7.268 | DP5-3 | 7.356 | SC5-3 | 7.178 | SP5-3 | 7.401 |
表3 实验煤样的测量数据
Table 3 Experimental data of coal samples
Impact pressure/MPa | Uniaxial impact | Triaxial impact | ||||||
---|---|---|---|---|---|---|---|---|
Vertical direction | Parallel direction | Vertical direction | Parallel direction | |||||
Coal number | Velocity/(m/s) | Coal number | Velocity/(m/s) | Coal number | Velocity/(m/s) | Coal number | Velocity/(m/s) | |
0.1 | DC1-1 | 2.341 | DP1-1 | 2.452 | SC1-1 | 2.417 | SP1-1 | 2.451 |
DC1-2 | 2.367 | DP1-2 | 2.433 | SC1-2 | 2.254 | SP1-2 | 2.354 | |
DC1-3 | 2.412 | DP1-3 | 2.328 | SC1-3 | 2.440 | SP1-3 | 2.481 | |
0.15 | DC2-1 | 3.497 | DP2-1 | 3.542 | SC2-1 | 3.422 | SP2-1 | 3.685 |
DC2-2 | 3.307 | DP2-2 | 3.478 | SC2-2 | 3.697 | SP2-2 | 3.338 | |
DC2-3 | 3.685 | DP2-3 | 3.438 | SC2-3 | 3.542 | SP2-3 | 3.478 | |
0.2 | DC3-1 | 4.068 | DP3-1 | 4.083 | SC3-1 | 4.112 | SP3-1 | 4.072 |
DC3-2 | 4.023 | DP3-2 | 4.103 | SC3-2 | 3.878 | SP3-2 | 3.984 | |
DC3-3 | 4.047 | DP3-3 | 3.988 | SC3-3 | 3.957 | SP3-3 | 3.994 | |
0.3 | DC4-1 | 5.376 | DP4-1 | 5.457 | SC4-1 | 5.411 | SP4-1 | 5.389 |
DC4-2 | 5.379 | DP4-2 | 5.398 | SC4-2 | 5.389 | SP4-2 | 5.428 | |
DC4-3 | 5.465 | DP4-3 | 5.273 | SC4-3 | 5.411 | SP4-3 | 5.394 | |
0.5 | DC5-1 | 7.156 | DP5-1 | 7.297 | SC5-1 | 7.438 | SP5-1 | 7.378 |
DC5-2 | 7.556 | DP5-2 | 7.334 | SC5-2 | 7.274 | SP5-2 | 7.298 | |
DC5-3 | 7.268 | DP5-3 | 7.356 | SC5-3 | 7.178 | SP5-3 | 7.401 |
Impact air pressure/MPa | 0.1 | 0.15 | 0.2 | 0.3 | 0.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Direction | C | P | C | P | C | P | C | P | C | P | |
Uniaxial | 12.273 | 7.893 | 13.500 | 9.685 | 15.532 | 12.896 | 22.036 | 18.407 | 29.624 | 24.339 | |
Triaxial | 14.462 | 11.206 | 17.426 | 14.649 | 23.668 | 18.514 | 29.569 | 23.782 | 37.840 | 27.518 |
表4 各组均值峰值应力数据
Table 4 Mean peak stress data of each group
Impact air pressure/MPa | 0.1 | 0.15 | 0.2 | 0.3 | 0.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Direction | C | P | C | P | C | P | C | P | C | P | |
Uniaxial | 12.273 | 7.893 | 13.500 | 9.685 | 15.532 | 12.896 | 22.036 | 18.407 | 29.624 | 24.339 | |
Triaxial | 14.462 | 11.206 | 17.426 | 14.649 | 23.668 | 18.514 | 29.569 | 23.782 | 37.840 | 27.518 |
Impact air pressure/MPa | 0.1 | 0.15 | 0.2 | 0.3 | 0.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Direction | C | P | C | P | C | P | C | P | C | P | |
Uniaxial | 27.024 | 23.671 | 37.874 | 34.311 | 48.550 | 43.797 | 73.483 | 68.522 | 105.706 | 98.274 | |
Triaxial | 31.832 | 26.869 | 42.634 | 38.427 | 57.198 | 50.387 | 84.306 | 75.973 | 112.466 | 104.716 |
表5 各组均值应变率数据
Table 5 Mean strain rate data of each group
Impact air pressure/MPa | 0.1 | 0.15 | 0.2 | 0.3 | 0.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Direction | C | P | C | P | C | P | C | P | C | P | |
Uniaxial | 27.024 | 23.671 | 37.874 | 34.311 | 48.550 | 43.797 | 73.483 | 68.522 | 105.706 | 98.274 | |
Triaxial | 31.832 | 26.869 | 42.634 | 38.427 | 57.198 | 50.387 | 84.306 | 75.973 | 112.466 | 104.716 |
1 | 范超, 余克服, 孟庆山, 等. SHPB在岩石动态力学性能测试中的应用成果综述 [J]. 土工基础, 2018, 32(5): 552-558. |
Fan C, Yu K F, Meng Q S, et al. Review of the SHPB in rock dynamics research [J]. Soil Engineering and Foundation, 2018, 32(5): 552-558. | |
2 | 王建国, 高全臣, 陆华, 等. 分层介质冲击响应的SHPB实验研 [J]. 振动与冲击, 2015, 34(9): 192-212. |
Wang J G, Gao Q C, Lu H, et al. Impact response tests of layered medium with SHPB [J]. Journal of Vibration and Shock, 2015, 34(9): 192-212. | |
3 | Laubacha S E, Marrettb R A, Olsonc J E, et al. Characteristics and origins of coal cleat a review [J]. International Journal of Coal Geology, 1998, (35): 175-207. |
4 | 赵明鹏. 煤层节理及其工程地质意义 [J]. 工程地质学报, 2001, 9(2): 152-157. |
Zhao M P. Coal bed joint and their engineering-geological signifcance [J]. Journal of Engineering Geology, 2001, 9(2): 152-157. | |
5 | 刘小波, 雷瑞德. 不同层理倾角对煤岩力学特性的演化规律研究 [J]. 山西建筑, 2018, 44(19): 57-59. |
Liu X B, Lei R D. Study on the evolution of mechanical properties of coal exposure to different plane inclination [J]. Shanxi Architecture, 2018, 44(19): 57-59. | |
6 | 宋远, 李化敏, 刘闯. 不同层理方向煤岩单轴压缩声发射特征实验 [J]. 煤矿安全, 2018, 49(11): 39-43, 48. |
Song Y, Li H M, Liu C. Experimental research on acoustic emission characteristics of coal rock with different bedding directions under uniaxial compression [J]. Safety in Coal Mines, 2018, 49(11): 39-43, 48. | |
7 | 解北京, 王新艳, 吕平洋. 层理煤岩SHPB冲击破坏动态力学特性实验 [J]. 振动与冲击, 2017, 36(21): 117-124. |
Xie B J, Wang X Y, Lü P Y. Dynamic properties of bedding coal and rock and the SHPB testing for its impact damage [J]. Journal of Vibration and Shock, 2017, 36(21): 117-124. | |
8 | 邓博知, 康向涛, 李星, 等. 不同层理方向对原煤变形计渗流特性的影响 [J]. 煤炭学报, 2015, 40(4): 888-894. |
Deng B Z, Kang X T, Li X, et al. Effect of different bedding directions on coal deformation and permeability characteristics [J]. Journal of China Coal Society, 2015, 40(4): 888-894. | |
9 | 解北京, 崔永国, 王金贵. 煤冲击破坏力学特性实验研究 [J]. 煤矿安全, 2013, 44(11): 18-21. |
Xie B J, Cui Y G, Wang J G. Experimental study on mechanics properties of coal impact damage [J]. Safety in Coal Mines, 2013, 44(11): 18-21. | |
10 | 梁书锋, 武宇, 刘殿书, 等. SHPB恒应变率加载实验技术研究 [J]. 郑州大学学报(工学版), 2018, 39(2): 50-55. |
Liang S F, Wu Y, Liu D S, et al. Study on SHPB techniques of constant strain rate loading [J]. Journal of Zhengzhou University (Engineering Science), 2018, 39(2): 50-55. | |
11 | 刘晓辉, 张茹, 刘建锋. 不同应变率下煤岩冲击动力实验研究 [J]. 煤炭学报, 2012, 37(9): 1528-1534. |
Liu X H, Zhang R, Liu J F. Dynamic test study of coal rock under different strain rates [J]. Journal of China Coal Society, 2012, 37(9): 1528-1534. | |
12 | 王登科, 刘淑敏, 魏建平, 等. 冲击载荷作用下煤的破坏特性实验研究 [J]. 采矿与安全工程学报, 2017, 34(3): 594-600. |
Wang D K, Liu S M, Wei J P, et al. The failure characteristics of coal under impact load in laboratory [J]. Journal of Mining & Safety Engineering, 2017, 34(3): 594-600. | |
13 | Zhao Y X, Liu S M, Jiang Y D, et al. Dynamic tensile strength of coal under dry and saturated conditions [J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1709-1720. |
14 | 李夕兵, 周子龙, 叶州元, 等. 岩石动静组合加载力学特性研究 [J]. 岩石力学与工程学报, 2008, (7): 1387-1395. |
Li X B, Zhou Z L, Ye Z Y, et al. Study of rock mechanical characteristics under couple static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, (7): 1387-1395. | |
15 | 高文蛟, 单仁亮. 无烟煤在冲击载荷下破坏模式与强度特性 [J]. 煤炭学报, 2012, 37(S1): 13-18. |
Gao W J, Shan R L. Failure pattern and strength properties of anthracite under impact loading [J]. Journal of China Coal Society, 2012, 37(S1): 13-18. | |
16 | 李明, 茅献彪, 曹丽丽, 等. 高应变率下煤力学特性实验研究 [J]. 采矿与安全工程学报, 2015, 32(2): 317-324. |
Li M, Mao X B, Cao L L, et al. Experimental study on mechanical properties of coal under high strain rate [J]. Journal of Mining & Safety Engineering, 2015, 32(2): 317-324. | |
17 | 宫凤强, 李夕兵, 刘希灵. 三维动静组合加载下岩石力学特性实验初探 [J]. 岩石力学与工程学报, 2011, 30(6): 1179-1190. |
Gong F Q, Li X B, Liu X L. Preliminary experimental study of characteristic of rock subjected to 3D coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1179-1190. | |
18 | Li D Y, Han Z Y, Sun X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1623-1643. |
19 | Ai D H, Zhao Y C, Wang Q F, et al. Crack propagation and dynamic properties of coal under SHPB impactct loading experimental investigation and numerical simulation [J]. Theoretical and Applied Fracture Mechanics, 2020, 105: 102393. |
20 | 李成武, 王金贵, 胡泊, 等. 煤岩材料SHPB实验被动围压数值模拟研究 [J]. 采矿与安全工程学报, 2014, 31(6): 957-962. |
Li C W, Wang J G, Hu B, et al. Numerical analysis of split Hopkinson pressure bar test with passive confined pressure for coal [J]. Journal of Mining & Safety Engineering, 2014, 31(6): 957-962. | |
21 | 梁书锋, 吴帅峰, 李胜林, 等. 岩石材料SHPB实验试件尺寸确定的研究 [J]. 工程爆破, 2015, 21(5): 1-5. |
Liang S F, Wu S F, Li S L, et al. Study on the determination of specimen size [J]. Eengineering Blasting, 2015, 21(5): 1-5. | |
22 | 张靖, 李福清. 影响SHPB实验精度因素分析 [J]. 地下空间与工程学报, 2014, 10(S1): 1635-1639. |
Zhang J, Li F Q. Analysis of factors influencing SHPB test precision [J]. Chinese Journal of Underground Space and Engineering, 2014, 10(S1): 1635-1639. | |
23 | 郭伟国. 应力波基础简明教程 [M]. 西安: 西北工业大学出版社, 2007: 128-139. |
Guo W G. Concise tutorial on stress wave basics [M]. Xi'an: Northwestern Polytechnical University Press, 2007: 128-139. | |
24 | 宋力, 胡时胜. SHPB 数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368-373. |
Song L, Hu S S. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368-373. | |
25 | 果春焕, 周培俊, 陆子川, 等. 波形整形技术在Hopkinson杆实验中的应用 [J]. 爆炸与冲击, 2015, 35(6): 881-887. |
Guo C H, Zhou P J, Lu Z C, et al. Application of pulse shaping technique in Hopkinson bar experiments [J]. Explosion and Shock Waves, 2015, 35(6): 881-887. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||