过程工程学报 ›› 2021, Vol. 21 ›› Issue (7): 827-835.DOI: 10.12034/j.issn.1009-606X.221107
陈子豪1(), 张可1(), 付锡彬1,2, 李昭东2, 张熹3, 章小峰1, 孙新军2, 钱健清1
收稿日期:
2021-03-29
修回日期:
2021-05-26
出版日期:
2021-07-28
发布日期:
2021-07-27
通讯作者:
张可 1062346050@qq.com;huzhude@yeah.net
作者简介:
陈子豪(1998-),男,安徽省蚌埠市人,硕士研究生,先进钢铁材料制备, E-mail: 1062346050@qq.com基金资助:
Zihao CHEN1(), Ke ZHANG1(), Xibin FU1,2, Zhaodong LI2, Xi ZHANG3, Xiaofeng ZHANG1, Xinjun SUN2, Jianqing QIAN1
Received:
2021-03-29
Revised:
2021-05-26
Online:
2021-07-28
Published:
2021-07-27
Contact:
Ke ZHANG 1062346050@qq.com;huzhude@yeah.net
摘要:
利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、电子背散射衍射(EBSD)及物理化学相分析法等技术研究了V含量对Ti-V复合微合金钢在不同卷取温度下组织和力学性能的影响。结果表明,两种Ti-V复合微合金钢在500~650℃卷取时,组织均由多边形铁素体和珠光体组成,增加V含量会抑制珠光体的形成;500~650℃区间卷取时,增加V含量使均匀延伸率和总延伸率有一定程度降低,而抗拉强度和屈服强度显著提高,卷取温度对均匀延伸率和总延伸率的影响不大,在600℃卷取时,两种实验钢的综合力学性能均达到最佳;V含量的增加使得在600℃卷取时尺寸小于10 nm的(Ti, V)C粒子数量显著增加,高钒钢的析出强化增量σp在183 MPa左右,其强化机制主要为沉淀强化和细晶强化,V含量是影响Ti-V复合微合金钢的沉淀强化增量和屈服强度的主要因素。
中图分类号:
陈子豪, 张可, 付锡彬, 李昭东, 张熹, 章小峰, 孙新军, 钱健清. V含量对Ti-V复合微合金钢组织和力学性能的影响[J]. 过程工程学报, 2021, 21(7): 827-835.
Zihao CHEN, Ke ZHANG, Xibin FU, Zhaodong LI, Xi ZHANG, Xiaofeng ZHANG, Xinjun SUN, Jianqing QIAN. Effect of V content on microstructure and mechanical properties of Ti-V complex microalloyed steel[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 827-835.
Experimental steel | C | Mn | Si | Ti | V | P | S | N | A1 | A3 |
---|---|---|---|---|---|---|---|---|---|---|
High vanadium steel/wt% | 0.081 | 1.42 | 0.10 | 0.053 | 0.14 | 0.007 | 0.0033 | 0.0040 | 677℃ | 845℃ |
Low vanadium steel/wt% | 0.085 | 1.47 | 0.08 | 0.042 | 0.061 | 0.007 | 0.0040 | 0.0049 | 677℃ | 835℃ |
表1 实验钢的化学成分及相变点
Table 1 Chemical compositions and transformation points of experimental steels
Experimental steel | C | Mn | Si | Ti | V | P | S | N | A1 | A3 |
---|---|---|---|---|---|---|---|---|---|---|
High vanadium steel/wt% | 0.081 | 1.42 | 0.10 | 0.053 | 0.14 | 0.007 | 0.0033 | 0.0040 | 677℃ | 845℃ |
Low vanadium steel/wt% | 0.085 | 1.47 | 0.08 | 0.042 | 0.061 | 0.007 | 0.0040 | 0.0049 | 677℃ | 835℃ |
Coiling temperature/℃ | M3C/wt% | MC/wt% | MC phase | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe | Mn | V | C* | Σ | V | Ti | C* | Σ | ||
500 | 0.795 | 0.026 | 0.0040 | 0.059 | 0.884 | 0.040 | 0.035 | 0.018 | 0.093 | (V0.533Ti0.467)C |
550 | 0.761 | 0.034 | 0.0042 | 0.057 | 0.856 | 0.020 | 0.023 | 0.011 | 0.054 | (V0.465Ti0.535)C |
600 | 0.562 | 0.051 | 0.0065 | 0.045 | 0.664 | 0.074 | 0.037 | 0.027 | 0.138 | (V0.667Ti0.333)C |
650 | 0.509 | 0.055 | 0.0076 | 0.041 | 0.613 | 0.120 | 0.037 | 0.038 | 0.195 | (V0.764Ti0.236)C |
表2 高钒钢在不同卷取温度下MC和M3C定量相分析结果
Table 2 Results of MC and M3C quantitative phase analysis of high vanadium steel at different coiling temperatures
Coiling temperature/℃ | M3C/wt% | MC/wt% | MC phase | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe | Mn | V | C* | Σ | V | Ti | C* | Σ | ||
500 | 0.795 | 0.026 | 0.0040 | 0.059 | 0.884 | 0.040 | 0.035 | 0.018 | 0.093 | (V0.533Ti0.467)C |
550 | 0.761 | 0.034 | 0.0042 | 0.057 | 0.856 | 0.020 | 0.023 | 0.011 | 0.054 | (V0.465Ti0.535)C |
600 | 0.562 | 0.051 | 0.0065 | 0.045 | 0.664 | 0.074 | 0.037 | 0.027 | 0.138 | (V0.667Ti0.333)C |
650 | 0.509 | 0.055 | 0.0076 | 0.041 | 0.613 | 0.120 | 0.037 | 0.038 | 0.195 | (V0.764Ti0.236)C |
Particle size/nm | Mass fraction/% | Volume fraction/% | σp/MPa |
---|---|---|---|
1~5 | 32.7 | 0.066 | 165 |
5~10 | 14.0 | 0.028 | 58 |
10~18 | 15.6 | 0.032 | 40 |
18~36 | 33.4 | 0.067 | 36 |
36~60 | 4.3 | 0.0087 | 8 |
表3 高钒钢在600℃卷取时的不同尺寸范围的沉淀强化增量计算值
Table 3 Calculation results of precipitation hardening increments of different size intervals coiled at 600℃
Particle size/nm | Mass fraction/% | Volume fraction/% | σp/MPa |
---|---|---|---|
1~5 | 32.7 | 0.066 | 165 |
5~10 | 14.0 | 0.028 | 58 |
10~18 | 15.6 | 0.032 | 40 |
18~36 | 33.4 | 0.067 | 36 |
36~60 | 4.3 | 0.0087 | 8 |
Coiling temperature/℃ | σo/MPa | σs/MPa | σg/MPa | σd/MPa | σp/MPa | σy(Calculation) | σy(Experiment) |
---|---|---|---|---|---|---|---|
500 | 48 | 78 | 217 | 63 | 144 | 550 | 536 |
550 | 48 | 120 | 211 | 63 | 109 | 551 | 571 |
600 | 48 | 100 | 204 | 63 | 183 | 598 | 609 |
650 | 48 | 68 | 197 | 63 | 201 | 577 | 552 |
表4 高钒钢在不同卷取温度下各强化增量
Table 4 Strengthening increment of high vanadium steel at different coiling temperatures
Coiling temperature/℃ | σo/MPa | σs/MPa | σg/MPa | σd/MPa | σp/MPa | σy(Calculation) | σy(Experiment) |
---|---|---|---|---|---|---|---|
500 | 48 | 78 | 217 | 63 | 144 | 550 | 536 |
550 | 48 | 120 | 211 | 63 | 109 | 551 | 571 |
600 | 48 | 100 | 204 | 63 | 183 | 598 | 609 |
650 | 48 | 68 | 197 | 63 | 201 | 577 | 552 |
1 | 齐俊杰, 黄运华, 张跃. 微合金化钢 [M]. 北京: 冶金工业出版社, 2006: 1-97. |
Qi J J, Huang Y H, Zhang Y. Microalloyed steel [M]. Beijing: Metallurgical Industry Press, 2006: 1-97. | |
2 | 孙维, 完卫国. 铌微合金化长材产品的开发 [J]. 炼钢, 2011, 27(3): 7-11, 70. |
Sun W, Wan W G. Development of Nb microalloyed long products [J]. Steelmaking, 2011, 27(3): 7-11, 70. | |
3 | 蒋蓉. 含V, Nb, Ti微合金钢的微观结构及力学性能 [J]. 武汉理工大学学报, 2009, 31(9): 13-15, 24. |
Jiang R. Microstructure and mechanical properties of microalloyed steel containing V, Nb and Ti [J]. Journal of Wuhan University of Technology, 2009, 31(9): 13-15, 24. | |
4 | 张可, 雍岐龙, 孙新军, 等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响 [J]. 金属学报, 2016, 52(5): 529-537. |
Zhang K, Yong Q L, Sun X J, et al. Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo microalloyed ultra high strength steel [J]. Acta Metallurgica Sinica, 2016, 52(5): 529-537. | |
5 | 解万里, 孟宪珩. 钒对低合金钢的强化作用 [J]. 承钢技术, 2006, (2): 31-37. |
Xie W L, Meng X H. Strengthening effect of vanadium on low alloy steel [J]. Chenggang Technology, 2006, (2): 31-37. | |
6 | 王仪康. 微合金钢回顾与展望 [J]. 中国工程科学, 2000, 2(2): 79-84. |
Wang Y K. Review and prospect of microalloyed steel [J]. China Engineering Science, 2000, 2(2): 79-84. | |
7 | 韩孝永. 铌、钒、钛在微合金钢中的作用 [J]. 宽厚板, 2006, 12(1): 39-41. |
Han X Y. Functions of Nb, V and Ti in micro-alloyed steel [J]. Wide and Heavy Plate, 2006, 12(1): 39-41. | |
8 | 惠亚军, 赵征志, 赵爱民, 等. 卷取温度对钛微合金化钢组织与性能的影响 [J]. 材料科学与工艺, 2014, 22(2): 81-85. |
Hui Y J, Zhao Z Z, Zhao A M, et al. Effect of coiling temperature on microstructure and properties of Ti microalloyed steel [J]. Materials Science and Technology, 2014, 22(2): 81-85. | |
9 | Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides [J]. ISIJ International, 2004, 44(11): 1945-1951. |
10 | Kim Y W, Song S W, Seo S J, et al. Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule [J]. 2013, 565(10): 430-438. |
11 | Bu F Z, Wang X M, Yang S W, et al. Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti-Nb and Ti-Nb-Mo microalloyed steels [J]. Materials Science & Engineering A, 2015, 620(3): 22-29. |
12 | 陈俊, 吕梦阳, 唐帅, 等. V-Ti微合金钢的组织性能及相间析出行为 [J]. 金属学报, 2014, 50(5): 524-530. |
Chen J, Lü M Y, Tang S, et al. Microstructure, properties and interphase precipitation behavior of V-Ti microalloyed steel [J]. Acta Metallurgica Sinica, 2014, 50(5): 524-530. | |
13 | 王茹玉, 赵时雨, 张可, 等. 回火温度对Ti-V-Mo复合微合金钢组织及硬度的影响 [J]. 钢铁研究学报, 2020, 32(12): 1132-1140. |
Wang R Y, Zhao S Y, Zhang K, et al. Effect of tempering temperature on microstructure and hardness of Ti-V-Mo composite microalloyed steel [J]. Journal of Iron and Steel Research, 2020, 32(12): 1132-1140. | |
14 | 李小琳, 王昭东. 含Nb-Ti低碳微合金钢中纳米碳化物的相间析出行为 [J]. 金属学报, 2015, 51(4): 417-424. |
Li X L, Wang Z D. Interphase precipitation behavior of nano carbides in low carbon microalloyed steel containing Nb-Ti [J]. Acta Metallurgica Sinica, 2015, 51(4): 417-424. | |
15 | Zhang H M, Chen R, Jia H B, et al. Effect of solid-solution second-phase particles on the austenite grain growth behavior in Nb-Ti high-strength if steel [J]. Strength of Materials, 2020, 52: 539-547. |
16 | 孙超凡, 蔡庆伍, 陈振华, 等. 冷却制度对铁素体基Ti-Mo微合金钢超细碳化物析出行为的影响 [J]. 材料工程, 2014, (10): 47-52. |
Sun C F, Cai Q W, Chen Z H, et al. Effect of cooling schedule on precipitation behavior of ultrafine carbides in ferrite based Ti-Mo microalloyed steel [J]. Materials Engineering, 2014, (10): 47-52. | |
17 | Zaitsev A I, Zaitsev A I, Koldaev A V, et al. Influence of the thermal deformation treatment on the structural state and properties of Ti-Mo microalloyed steels of the ferritic class [J]. IOP Conference Series: Materials Science and Engineering, 2020, 969(1): 12-17. |
18 | 卜凡征, 王学敏, 陈琳, 等. Ti-Nb-Mo微合金钢回火过程中纳米碳化物的析出行为及组织演变 [J]. 材料热处理学报, 2015, 36(8): 96-103. |
Bu F Z, Wang X M, Chen L, et al. Precipitation behavior and microstructure evolution of nano carbides in Ti-Nb-Mo microalloyed steel during tempering [J]. Journal of Materials Heat Treatment, 2015, 36(8): 96-103. | |
19 | Jang J H, Heo Y U, Lee C H, et al. Interphase precipitation in Ti-Nb and Ti-Nb-Mo bearing steel [J]. Materials Science and Technology, 2013, 29(3): 309-313. |
20 | 雍岐龙. 钢铁材料中的第二相 [M]. 北京:冶金工业出版社, 2006: 1-509. |
Yong Q L. Secondary phases in steels [M]. Beijing: Metallurgical Industry Press, 2006: 1-509. | |
21 | 陈昕, 刘春明. 钒和钼对微合金化贝氏体钢第二相析出的影响 [J]. 材料与冶金学报, 2011, 10(3): 209-211, 236. |
Chen X, Liu C M. Effect of vanadium and molybdenum on precipitation of second phase in microalloyed bainitic steel [J]. Journal of Materials and Metallurgy, 2011, 10(3): 209-211, 236. | |
22 | 雍岐龙, 马鸣图, 吴宝榕. 微合金钢─物理和力学冶金 [M]. 北京: 机械工业出版社, 1989: 1-368. |
Yong Q L, Ma M T, Wu B R. Microalloyed steel-physical and mechanical metallurgy [M]. Beijing: China Machine Press, 1989: 1-368. | |
23 | Gladman T, McIvor I D, Pickering F B. Some aspects of the structure-property relationships in high carbon ferrite-pearlite steels [J]. Journal of the Iron and Steel Institute, 1972, 210(12): 916-930. |
24 | Hall E O. The deformation and ageing of mild steel: Ⅲ discussion of results [J]. Proccedings of the Physical Society. Section B, 1951, 64(9): 747-753. |
25 | Petch N J. The cleavage strength of polycrystals [J]. Journal of the Iron and Steel Institute, 1953, 174: 25-28. |
26 | 马玉喜, 段小林, 刘静, 等. 800 MPa级Ti高强钢铸坯断裂的原因 [J]. 钢铁研究学报, 2016, 28(2): 51-56. |
Ma Y X, Duan X L, Liu J, et al. Causes of slab fracture of 800 MPa Ti high strength steel [J]. Journal of Iron and Steel Research, 2016, 28(2): 51-56. | |
27 | Ashby M F, Kelly A, Nicholson R B. Strengthening mechanisms in crystals [M]. Amsterdam: Elsevier, 1971: 137. |
28 | Chin G Y, Mammel W L. Computer solutions of the Taylor analysis for axisymmetric flow [J]. Transactions of the Metallurgical Society of AIME, 1967, 239(1): 1400-1405. |
29 | 杨庚蔚, 陆佳伟, 孙辉, 等. Ti-V微合金化热轧高强钢的相变规律及组织性能 [J]. 钢铁研究学报, 2019, 31(8): 726-732. |
Yang G W, Lu J W, Sun H, et al. Phase transformation and microstructure of Ti-V microalloyed hot rolled high strength steel [J]. Journal of Iron and Steel Research, 2019, 31(8): 726-732. | |
30 | Kim Y W, Kim J H, Hong S G, et al. Effects of rolling temperature on the microstructure and mechanical properties of Ti-Mo microalloyed hot-rolled high strength steel [J]. Materials Science and Engineering: A, 2014, 605(5): 244-252. |
[1] | 梁为民, 刘恒, 李敏敏, 岳高伟. 结构异性煤体单轴/三轴冲击动力学性能研究[J]. 过程工程学报, 2021, 21(7): 817-826. |
[2] | 马越 周新涛 黄静 罗中秋 符义忠 母维宏 王路星 邵周军. 矿物掺合料对磷酸镁水泥性能影响及机理研究现状[J]. 过程工程学报, 2021, 21(6): 629-638. |
[3] | 黄文 薛召露 刘侠 倪振航 吴朝军 张世宏. 喷涂功率对YSZ涂层的力学性能和抗铝硅熔体腐蚀性能的影响[J]. 过程工程学报, 2020, 20(12): 1463-1471. |
[4] | 罗文梅 万里强 朱帅帅 付超 韩心悦 黄发荣. 基于含硅多芳炔化合物制备新型聚三唑树脂[J]. 过程工程学报, 2019, 19(5): 1022-1029. |
[5] | 张浩 徐远迪 方圆. 改性多孔钢渣基橡胶复合材料制备机理[J]. 过程工程学报, 2019, 19(2): 387-392. |
[6] | 顾效源 潘福奎 汪文杰 张黎明. 90°圆截面弯管内稠油流动特性分析[J]. 过程工程学报, 2019, 19(1): 83-90. |
[7] | 潘博 王露雨 王海军 江松达 万里强 郝旭峰 田杰 黄发荣. 聚三唑酯树脂的合成及其性能[J]. 过程工程学报, 2019, 19(1): 181-188. |
[8] | 张浩 王林 龙红明. 碱激发剂对钢渣胶凝材料抗压强度的影响[J]. 过程工程学报, 2018, 18(2): 382-386. |
[9] | 张浩 杨刚 龙红明 唐刚 刘秀玉. 改性钢渣代炭黑环保型丁苯橡胶的制备及其性能[J]. 过程工程学报, 2017, 17(6): 1299-1303. |
[10] | 杨松泉 褚雅志 曹婉婉 刘燕 王领. 筛孔型润德塔盘的性能 [J]. , 2017, 17(1): 35-40. |
[11] | 曹婉婉 郭建全 樊轩 褚雅志 马晓迅-. 筛孔型润德塔盘的流体力学性能[J]. 过程工程学报, 2015, 15(3): 381-385. |
[12] | 王向辉 翁力 于守泉. 热解炭微观结构对炭/炭复合材料力学性能的影响[J]. , 2012, 12(6): 1048-1052. |
[13] | 谢昌明 钱扬保 魏玺 戈敏 张伟刚. C/C-ZrB2-ZrC-SiC超高温复相陶瓷基复合材料的性能[J]. , 2012, 12(5): 864-869. |
[14] | 张书第 翟玉春 张振芳. PVA/Fe2O3磁敏感性水凝胶的制备及性能[J]. , 2010, 10(2): 405-408. |
[15] | 孙昊 计云萍 陈林. 稀土Ce对X65管线钢组织和性能的影响[J]. , 2010, 10(2): 240-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||