过程工程学报 ›› 2021, Vol. 21 ›› Issue (7): 847-856.DOI: 10.12034/j.issn.1009-606X.220221
收稿日期:
2020-07-13
修回日期:
2020-07-25
出版日期:
2021-07-28
发布日期:
2021-07-27
通讯作者:
霍锋 tyhu18@ipe.ac.cn;huofeng@ipe.ac.cn
作者简介:
胡天媛(1995-),女,安徽省池州市人,硕士研究生,化学工程专业,E-mail: tyhu18@ipe.ac.cn基金资助:
Tianyuan HU1,2(), Yanlei WANG1, Feng HUO1(), Hongyan HE1
Received:
2020-07-13
Revised:
2020-07-25
Online:
2021-07-28
Published:
2021-07-27
Contact:
Feng HUO tyhu18@ipe.ac.cn;huofeng@ipe.ac.cn
摘要:
离子液体因其优异的物化性质、能抑制多硫化物溶解等特点,近年来被广泛应用于锂硫电池电解液中。在电池充放电产物中,难溶性Li2S和Li2S2易聚集沉积在电极表面,影响电池性能,而目前关于其团聚行为与电解液性质的微观机理研究较少。本工作利用量化计算和分子动力学模拟分析了短链Li2S和Li2S2在离子液体中的微观结构以及形成团簇的情况。通过分析体系的微观结构发现,阳离子中主要与S作用的是侧链甲基,短链多硫化物之间Li-S作用远强于与阴离子的Li-O作用。团簇尺寸分布的结果表明,短链多硫化物在[TFSI]型离子液体中易形成多分子的大团簇,Li2S2体系比Li2S体系中的大团簇比例更高;离子液体阴离子配位能力越强,形成大的Li2S团簇比例越少,但阴离子的构型特点和作用形式也会对团簇的尺寸结构造成影响。
中图分类号:
胡天媛, 王艳磊, 霍锋, 何宏艳. 短链多硫化物在离子液体中聚集行为的分子动力学模拟[J]. 过程工程学报, 2021, 21(7): 847-856.
Tianyuan HU, Yanlei WANG, Feng HUO, Hongyan HE. Molecular dynamics simulations of short-chain lithium polysulfides clustering in ionic liquids[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 847-856.
System | Number of ILs | Concentration of Li2S/Li2S2/(mol/L) | ||||
---|---|---|---|---|---|---|
0.2 | 0.4 | 0.6 | 0.8 | 1.0 | ||
[PP13][TFSI]-Li2S2 | 800 | 49 | 98 | 147 | 196 | 245 |
[PP13][OTf]-Li2S2 | 800 | 37 | 75 | 112 | 149 | 186 |
[PP13][TFSI]-Li2S | 800 | 49 | 98 | 147 | 196 | 245 |
[PP13][OTf]-Li2S | 800 | 37 | 75 | 112 | 149 | 186 |
[PP13][PF6]-Li2S | 800 | 184 | ||||
[PP13][DCA]-Li2S | 800 | 163 | ||||
[PP13]Br-Li2S | 800 | 176 |
表1 模拟体系中各组分数
Table 1 Number of molecules in the simulation systems
System | Number of ILs | Concentration of Li2S/Li2S2/(mol/L) | ||||
---|---|---|---|---|---|---|
0.2 | 0.4 | 0.6 | 0.8 | 1.0 | ||
[PP13][TFSI]-Li2S2 | 800 | 49 | 98 | 147 | 196 | 245 |
[PP13][OTf]-Li2S2 | 800 | 37 | 75 | 112 | 149 | 186 |
[PP13][TFSI]-Li2S | 800 | 49 | 98 | 147 | 196 | 245 |
[PP13][OTf]-Li2S | 800 | 37 | 75 | 112 | 149 | 186 |
[PP13][PF6]-Li2S | 800 | 184 | ||||
[PP13][DCA]-Li2S | 800 | 163 | ||||
[PP13]Br-Li2S | 800 | 176 |
RILs | Density/(g/cm3) | D+/×10-11 m2/s | D-/×10-11 m2/s |
---|---|---|---|
[PP13][TFSI] | 1.38 | 1.843±0.019 | 1.339±0.013 |
[PP13][OTf] | 1.25 | 1.177±0.012 | 0.734±0.010 |
表2 298 K下MD模拟得到的离子液体密度与自扩散系数
Table 2 Densities and self-diffusion coefficients of ILs at 298 K from MD simulations
RILs | Density/(g/cm3) | D+/×10-11 m2/s | D-/×10-11 m2/s |
---|---|---|---|
[PP13][TFSI] | 1.38 | 1.843±0.019 | 1.339±0.013 |
[PP13][OTf] | 1.25 | 1.177±0.012 | 0.734±0.010 |
Angle | θ0/° | Kθ /[kcal/(mol·rad2)] |
---|---|---|
Li-S-Li[a] | 138.00 | 55.00 |
S-Li-S[b] | 60.00 | 218.00 |
Li-S-Li[b] | 98.00 | 55.00 |
表3 本工作中Li2S和Li2S2的键角参数([a]代表Li2S,[b]代表Li2S2)
Table 3 Angle parameters of Li2S and Li2S2 in this work ([a]for Li2S, [b] for Li2S2)
Angle | θ0/° | Kθ /[kcal/(mol·rad2)] |
---|---|---|
Li-S-Li[a] | 138.00 | 55.00 |
S-Li-S[b] | 60.00 | 218.00 |
Li-S-Li[b] | 98.00 | 55.00 |
Simulation | σLi/×10-1 nm | σS/×10-1 nm | εLi/(kcal/mol) | εS/(kcal/mol) | ρLi2S/(g/cm3) | ρS8/(g/cm3) |
---|---|---|---|---|---|---|
System-1[ | 2.8700 | 3.5500 | 0.0005 | 0.2500 | 1.83 | 1.71 |
System-2[ | 2.0261 | 3.5640 | 0.0183 | 0.2504 | 1.91 | 1.70 |
System-3[ | 2.1300 | 3.5500 | 0.0765 | 0.2500 | 1.73 | 1.71 |
System-4[ | 3.6000 | 3.3032 | 0.0005 | 0.2500 | 1.71 | 1.90 |
System-5[ | 3.6000 | 3.3900 | 0.0005 | 0.4070 | 1.63 | 1.98 |
System-6[ | 3.6000 | 3.3900 | 0.0183 | 0.4070 | 1.11 | 1.98 |
表4 LJ参数的模拟(与Li2S和S8的实验密度对比)
Table 4 Force field simulations for LJ parameters (compared with experimental densities of Li2S and S8)
Simulation | σLi/×10-1 nm | σS/×10-1 nm | εLi/(kcal/mol) | εS/(kcal/mol) | ρLi2S/(g/cm3) | ρS8/(g/cm3) |
---|---|---|---|---|---|---|
System-1[ | 2.8700 | 3.5500 | 0.0005 | 0.2500 | 1.83 | 1.71 |
System-2[ | 2.0261 | 3.5640 | 0.0183 | 0.2504 | 1.91 | 1.70 |
System-3[ | 2.1300 | 3.5500 | 0.0765 | 0.2500 | 1.73 | 1.71 |
System-4[ | 3.6000 | 3.3032 | 0.0005 | 0.2500 | 1.71 | 1.90 |
System-5[ | 3.6000 | 3.3900 | 0.0005 | 0.4070 | 1.63 | 1.98 |
System-6[ | 3.6000 | 3.3900 | 0.0183 | 0.4070 | 1.11 | 1.98 |
图3 离子对与短链多硫化物作用的最优构型[B3LYP/6-311+g(d,p)水平上](单位:0.1 nm)(a) [PP13][OTf]-Li2S (b) [PP13][TFSI]-Li2S (c) [PP13][OTf]-Li2S2 (d) [PP13][TFSI]-Li2S2
Fig.3 Structures of ion pairs and Li2S/Li2S2 optimized at B3LYP/6-311+g(d,p) level (unit: 0.1 nm)
图5 离子液体-短链多硫化物体系中阳离子周围S的SDFs(上栏)和阴离子周围Li的SDFs(下栏)(a) [PP13][TFSI]-Li2S (b) [PP13][OTf]-Li2S (c) [PP13][TFSI]-Li2S2 (d) [PP13][OTf]-Li2S2
Fig.5 SDFs of S around central cations (up panels) and Li around central anions (bottom panels) in ILs and short-chain polysulfides system
Anion | [PF6]- | [TFSI]- | [OTf]- | [DCA]- | Br- |
---|---|---|---|---|---|
2.91 | 2.91 | 2.41 | 2.10 | 2.65 |
表5 含不同配位能力阴离子的五种离子液体体系中Li2S团簇的平均尺寸
Table 5 The mean size of Li2S clusters in five ILs containing anions with different coordination ability
Anion | [PF6]- | [TFSI]- | [OTf]- | [DCA]- | Br- |
---|---|---|---|---|---|
2.91 | 2.91 | 2.41 | 2.10 | 2.65 |
1 | Zhu J, Zou J L, Cheng H, et al. High energy batteries based on sulfur cathode [J]. Green Energy & Environment, 2019, 4(4): 345-359. |
2 | Pan H, Wei X, Henderson W A, et al. On the way toward understanding solution chemistry of lithium polysulfides for high energy Li-S redox flow batteries [J]. Advanced Energy Materials, 2015, 5(16): 1500113. |
3 | Pan H L, Chen J Z, Cao R G, et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth [J]. Nature Energy, 2017, 2(10): 813-820. |
4 | Vijayakumar M, Govind N, Walter E, et al. Molecular structure and stability of dissolved lithium polysulfide species [J]. Physical Chemistry Chemical Physics, 2014, 16(22): 10923-10932. |
5 | Barchasz C, Molton F, Duboc C, et al. Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification [J]. Analytical Chemistry, 2012, 84(9): 3973-3980. |
6 | Cuisinier M, Hart C, Balasubramanian M, et al. Radical or not radical: revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes [J]. Advanced Energy Materials, 2015, 5(16): 1401801. |
7 | Zhang G, Peng H J, Zhao C Z, et al. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries [J]. Angewandte Chemie International Edition, 2018, 57(51): 16732-16736. |
8 | Chu H, Noh H, Kim Y J, et al. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions [J]. Nature Communications, 2019, 10(1): 188. |
9 | Wang B, Alhassan S M, Pantelides S T. Formation of large polysulfide complexes during the lithium-sulfur battery discharge [J]. Physical Review Applied, 2014, 2(3): 034004. |
10 | Yu T, Li F, Liu C Y, et al. Understanding the role of lithium sulfide clusters in lithium-sulfur batteries [J]. Journal of Materials Chemistry A, 2017, 5(19): 9293-9298. |
11 | Partovi-Azar P, Kühne T D, Kaghazchi P. Evidence for the existence of Li2S2 clusters in lithium-sulfur batteries: ab initio Raman spectroscopy simulation [J]. Physical Chemistry Chemical Physics, 2015, 17(34): 22009-22014. |
12 | Gupta A, Bhargav A, Jones J P, et al. Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium-sulfur batteries [J]. Chemistry of Materials, 2020, 32(5): 2070-2077. |
13 | Park C, Ronneburg A, Risse S, et al. Structural and transport properties of Li/S battery electrolytes: role of the polysulfide species [J]. The Journal of Physical Chemistry C, 2019, 123(16): 10167-10177. |
14 | Andersen A, Rajput N N, Han K S, et al. Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane [J]. Chemistry of Materials, 2019, 31(7): 2308-2319. |
15 | Xiao J W, Zhou G M, Chen H T, et al. Elaboration of aggregated polysulfide phases: from molecules to large clusters and solid phases [J]. Nano Letters, 2019, 19(10): 7487-7493. |
16 | Dong K, Liu X M, Dong H F, et al. Multiscale Studies on Ionic Liquids [J]. Chemical Reviews, 2017, 117(10): 6636-6695. |
17 | Zhang L, Dong K, Chen S M, et al. Novel ionic liquid based electrolyte for double layer capacitors with enhanced high potential stability [J]. Science China Chemistry, 2016, 59(5): 547-550. |
18 | Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1-19. |
19 | Zhong X J, Liu Z P, Cao D P. Improved classical united-atom force field for imidazolium-based ionic liquids: tetrafluoroborate, hexafluorophosphate, methylsulfate, trifluoromethylsulfonate, acetate, trifluoroacetate, and bis(trifluoromethylsulfonyl)amide [J]. The Journal of Physical Chemistry B, 2011, 115(33): 10027-10040. |
20 | Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids [J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236. |
21 | Rizzo R C, Jorgensen W L. OPLS all-atom model for amines: resolution of the amine hydration problem [J]. Journal of the American Chemical Society, 1999, 121(20): 4827-4836. |
22 | Bazito F F C, Kawano Y, Torresi R M. Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium [J]. Electrochimica Acta, 2007, 52(23): 6427-6437. |
23 | Tokuda H, Ishii K, Susan M A B H, et al. Physicochemical properties and structures of room-temperature ionic liquids. 3. variation of cationic structures [J]. The Journal of Physical Chemistry B, 2006, 110(6): 2833-2839. |
24 | Gardas R L, Costa H F, Freire M G, et al. Densities and derived thermodynamic properties of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids [J]. Journal of Chemical & Engineering Data, 2008, 53(3): 805-811. |
25 | Liu Z X, Hubble D, Balbuena P B, et al. Adsorption of insoluble polysulfides Li2S x (x=1, 2) on Li2S surfaces [J]. Physical Chemistry Chemical Physics, 2015, 17(14): 9032-9039. |
26 | Zou W L, Kalescky R, Kraka E, et al. Relating normal vibrational modes to local vibrational modes with the help of an adiabatic connection scheme [J]. The Journal of Chemical Physics, 2012, 137(8): 084114. |
27 | Cornell W D, Cieplak P, Bayly C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules [J]. Journal of the American Chemical Society, 1995, 117(19): 5179-5197. |
28 | Ou X W, Yu Y Z, Wu R, et al. Shuttle suppression by polymer-sealed graphene-coated polypropylene separator [J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5534-5542. |
29 | Islam M M, Ostadhossein A, Borodin O, et al. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials [J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3383-3393. |
30 | Pastorino C, Gamba Z. Test of a simple and flexible S8 model molecule in α-S8 crystals [J]. Chemical Physics Letters, 2000, 319(1): 20-26. |
31 | Frisch M, Trucks G, Schlegel H B, et al. Gaussian 09 [M]. Revision d. 01. Wallingford, CT: Gaussian Inc., 2009: 28. |
32 | Martínez L, Andrade R, Birgin E G, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations [J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164. |
33 | Molinari N, Mailoa J P, Kozinsky B. Effect of salt concentration on ion clustering and transport in polymer solid electrolytes: a molecular dynamics study of PEO-LiTFSI [J]. Chemistry of Materials, 2018, 30(18): 6298-6306. |
34 | Schmeisser M, Illner P, Puchta R, et al. Gutmann donor and acceptor numbers for ionic liquids [J]. Chemistry-A European Journal, 2012, 18(35): 10969-10982. |
[1] | 马肃 戴毅. 含有偶氮苯结构单元的离子液体在智能材料中的应用与研究进展[J]. 过程工程学报, 2022, 22(8): 1011-1018. |
[2] | 巨朝阳 余梦婷 雷庭俞 程海翔 任兰会 葛承胜. 密度泛函理论研究金属镧离子的水合团簇[J]. 过程工程学报, 2022, 22(6): 764-773. |
[3] | 宋春雨 聂普选 马守涛 任国瑜. 典型过程强化技术在纳米材料制备中的应用进展[J]. 过程工程学报, 2021, 21(4): 373-382. |
[4] | 郑征 何宏艳. 基于全球专利信息的离子液体领域发展态势分析[J]. 过程工程学报, 2021, 21(4): 383-393. |
[5] | 郭艳东 张晓春 游琳琳. 水对离子液体微观结构和传输性能的影响[J]. 过程工程学报, 2021, 21(4): 431-439. |
[6] | 孙晨阳 侯超峰 葛蔚. LJ势氩系统分子动力学模拟中截断半径的选择[J]. 过程工程学报, 2021, 21(3): 259-264. |
[7] | 潘凤娇 周乐 曾少娟 刘雪 刘艳荣 聂毅. 离子液体/羊毛纤维/凝固剂三元相图的构建[J]. 过程工程学报, 2021, 21(2): 160-166. |
[8] | 王雨晴 刘居陶 徐琴琴 银建中. 超临界流体沉积制备[Emim][BF4]支撑型离子液体膜及其气体分离性能[J]. 过程工程学报, 2021, 21(2): 134-143. |
[9] | 马艳艳 李正军 张松平 陈卫 任瑛. HBc-VLP的分子动力学模拟和结合自由能计算[J]. 过程工程学报, 2021, 21(2): 219-229. |
[10] | 郭艳东 贺艳静 张晓春. 离子液体-氧化石墨烯膜材料在CO2分离领域的研究进展[J]. 过程工程学报, 2021, 21(12): 1373-1382. |
[11] | 刘亚迪 Niklas Hedin 赵国英 贾利娜 聂毅. 低场MRI原位研究离子液体合成及相态变化[J]. 过程工程学报, 2020, 20(7): 807-821. |
[12] | 张家赫 邢春贤 张海涛. 纳米SiO2填料对离子凝胶电解质及高压超级电容器性能的影响[J]. 过程工程学报, 2020, 20(3): 354-361. |
[13] | 刘佳慧 刘会婷 赵国英 孙振宇. 离子液体自模板合成多孔碳氮材料及其对二氧化碳的吸附[J]. 过程工程学报, 2020, 20(1): 108-115. |
[14] | 郭骥 姬忠礼. 苯酚浓度对亲油疏水型滤材聚结性能的影响[J]. 过程工程学报, 2019, 19(6): 1143-1152. |
[15] | 郑征 霍锋 王瑜. 基于文献计量的离子液体领域研究现状及发展趋势[J]. 过程工程学报, 2019, 19(5): 890-899. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||