Chin. J. Process Eng. ›› 2017, Vol. 17 ›› Issue (6): 1119-1126.DOI: 10.12034/j.issn.1009-606X.217148
• Reviews • Previous Articles Next Articles
Liuyang WANG1,2, Guoying ZHAO2, Baozeng REN1*, Suojiang ZHANG2*
Received:
2017-02-22
Revised:
2017-04-05
Online:
2017-12-20
Published:
2017-12-05
Contact:
Liu-Yang WANG 1403827214@qq.com
王留阳1,2, 赵国英2, 任保增1*, 张锁江2*
通讯作者:
王留阳 1403827214@qq.com
基金资助:
Liuyang WANG Guoying ZHAO Baozeng REN Suojiang ZHANG. Research Advances in Acidity Characterization of Acid Catalysts[J]. Chin. J. Process Eng., 2017, 17(6): 1119-1126.
王留阳 赵国英 任保增 张锁江. 酸性催化剂的酸性表征研究进展[J]. 过程工程学报, 2017, 17(6): 1119-1126.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jproeng.com/EN/10.12034/j.issn.1009-606X.217148
[1] 辛勤,罗孟飞. 现代催化研究方法 [M]. 科学出版社: 北京, 2009; 314. XIN Q, LUO M F. XianDai CuiHua YanJiuFangFa [M]. Science Press: Beijing, 2009;314 [2] Feller A,Guzman A,Zuazo I, et al. On the mechanism of catalyzed isobutane/butene alkylation by zeolites [J]. Journal of Catalysis, 2004, 224(1): 80-93. [3] 黄仲涛. 工业催化 [M]. 化学工业出版社: 北京, 1994. HUANG Z T. GongYe CuiHua [M]. Chemical Industry Press: Beijing, 1994. [4] 李海方. 离子液体酸催化异丁烷烷基化反应的研究. 河北科技大学, 河北, 2013. LI H F. Investigation on Isobutane Alkylation Utilizing Ionic Liquid/Acid as Catalyst. Hebei University of Science and Technology, Hebei, 2013. [5] Dawodu F A,Ayodele O O,Xin J Y, et al. Application of solid acid catalyst derived from low value biomass for a cheaper biodiesel production [J]. Journal of Chemical Technology & Biotechnology, 2014, 89(12): 1898-1909. [6] Huang Q,Zhao G Y,Zhang S J, et al. Improved Catalytic Lifetime of H2SO4 for Isobutane Alkylation with Trace Amount of Ionic Liquids Buffer [J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1464-1469. [7] Ren H L,Zhao G Y,Zhang S J, et al. Triflic acid catalyzed isobutane alkylation with trifluoroethanol as a promoter [J]. Catalysis Communications, 2012, 18: 85-88. [8] Sun J,Han L J,Cheng W G, et al. Efficient Acid-Base Bifunctional Catalysts for the Fixation of CO2 with Epoxides under Metal- and Solvent-Free Conditions [J]. Chemsuschem, 2011, 4(4): 502-507. [9] Sun J,Wang L,Zhang S J, et al. ZnCl2/phosphonium halide: An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate [J]. Journal of Molecular Catalysis a-Chemical, 2006, 256(1-2): 295-300. [10] Wang A Y,Zhao G Y,Liu F F, et al. Anionic Clusters Enhanced Catalytic Performance of Protic Acid Ionic Liquids for Isobutane Alkylation [J]. Industrial & Engineering Chemistry Research, 2016, 55(30): 8271-8280. [11] Wang Y N,Yan R Y,Lv Z P, et al. Lanthanum and Cesium-Loaded SBA-15 Catalysts for MMA Synthesis by Aldol Condensation of Methyl Propionate and Formaldehyde [J]. Catalysis Letters, 2016, 146(9): 1808-1818. [12] Yang Z F,Sun J,Cheng W G, et al. Biocompatible and recyclable amino acid binary catalyst for efficient chemical fixation of CO2 [J]. Catalysis Communications, 2014, 44: 6-9. [13] Yu J L,Yang Y,Chen W T, et al. The synthesis and application of zeolitic material from fly ash by one-pot method at low temperature [J]. Green Energy & Environment, 2016: online. [14] Zhang J M,Zhang S J,Dong K, et al. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids [J]. Chemistry, 2006, 12(15): 4021-4026. [15] Zuo C C,Ge T T,Li C S, et al. Kinetic and Reactive Distillation for Acrylic Acid Synthesis via Transesterification [J]. Industrial & Engineering Chemistry Research, 2016, 55(30): 8281-8291. [16] Zuo C C,Pan L S,Cao S S, et al. Catalysts, Kinetics, and Reactive Distillation for Methyl Acetate Synthesis [J]. Industrial & Engineering Chemistry Research, 2014, 53(26): 10540-10548. [17] 喻志武,郑安民,王强, 等. 固体核磁共振研究固体酸催化剂酸性进展 [J]. 波普学杂志, 2010, 27(4): 485-521. Yu Z W.; Zheng A M.; Wang Q, et al. Acidity Characterization of Solid Acid Catalysts by Solid-State NMR Spectroscopy: A Review on Recent Progresses [J]. Chinese Journal of Magnetic Resonance, 2010, 27(4): 485-521. [18] 马秀莲,饶国瑛,徐金垒, 等. 色谱法和红外光谱法测定氧化铝的表面酸性 [J]. 石油化工, 1984, 13(7): 452-457. Ma X L; Nao G Y; Xu J L, et al. Determination of Surface Acidity of Alumina by Chromatography and Infrared Spectrometry [J]. PETROCHEMICAL TECHNOLOGY, 1984, 13(7): 452-457. [19] 康丽娟. 新型Br?nsted-Lewis双酸性离子液体的合成、表征及应用. 河北工业大学, 河北, 2012. KANG L J. Synthesis, Characterization and Application of Novel Br?nsted-Lewis Acidic Ionic Liquids. Hebei University of Technology, Hebei, 2012. [20] 刘亚儒,赵霞,陈蕊. 吸收光谱法测量酸值酸度 [J]. 甘肃科技, 2005, 21(1): 3. Liu Y R; Zhao X; Chen R [J]. Gansu Science and Technology, 2005, 21(1): 3. [21] 吴芹,董斌琦,韩明汉, 等. 氯铝酸离子液体的酸性及其催化烷基化反应研究 [J]. 光谱学与光谱分析, 2007, 27(3): 460-464. Wu Q; Dong B Q; Han M H, et al. Studies on Acidity of Chloroaluminate Ionic Liquids and Its Catalytic Performance for Alkylation of Benzene with Long-Chain Alkenes [J]. Spectroscopy and Spectral Analysis, 2007, 27(3): 460-464. [22] 周震寰,贾树岩,张培贵, 等. ZSM-5分子筛酸性修饰及探针分子表征 [J]. 石油炼制与化工, 2016, 47(3): 5-9. Zhou Z H; Jia S Y; Zhang P G, et al. Modification of Acidity of ZSM-5 Zeolite and Its Isomerization Properties [J]. PETROLEUM PROCESSING AND PETROCHENICALS, 2016, 47(3): 5-9. [23] 王晓化,陶国宏,吴晓牧, 等. 离子液体酸性的红外光谱探针法研究 [J]. 物理化学学报, 2005, 21(5): 528-533. WANG X H; Tao G G; Wu X M, et al. Investigation of the Acidity Ionic Liquids by IR Spectroscopy [J]. Wuli Huaxue Xuebao, 2005, 21(5): 528-533. [24] 卢丹,赵国英,任保增, 等. 醚基功能化离子液体的合成及催化烷基化反应 [J]. 化工学报, 2015, 66(7): 2481-2487. Lu D; Zhao G Y; Ren B Z, et al. Isobutane Alkylation Catalyzed by Ether Functionalized Ionic Liquids [J]. CIESC Journal, 2015, 66(7): 2481-2487. [25] 刘鹰,孙宏娟,丛迎楠, 等. Cu对离子液体异丁烷_丁烯烷基化反应选择性的影响研究 [J]. 燃料化学学报, 2014, 42(8): 1010-1016. Liu Y.; Sun H. J.; Cong Y. N., et al. Study on the Selectivity of Isobutane/2-butene Alkylation Catalyzed by Ionic Liquid with Cu Compound [J]. Journal of Fuel Chemistry and Technology, 2014, 42(8): 1010-1016. [26] Yang Y L,Kou Y. Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe [J]. Chemical communications, 2004, (2): 226-7. [27] 吴芹,董斌琦,韩明汉, 等. 氯铝酸离子液体酸性的吡啶探针红外光谱研究 [J]. 分析化学, 2006, 34(9): 1323-1326. Wu Q; Dong B Q; Han M H, et al. Studies on Acidity of Chloroaluminate Ionic Liquids Using Pyridines as Infrared Spectroscopic Probe [J]. Chinese Journal of Analytical Chemistry, 2006, 34(9): 1323-1326. [28] 佘励勤,李宣文. 固体催化剂的研究方法第四章化学吸附与表面酸性测定 [J]. 石油化工, 2000, 29(8): 621-635. YU L Q, LI X W. Methods for the Study of Solid Catalysts: Chapter 4 Chemical Adsorption and Surface Acidity Determination [J]. PETROCHEMICAL TECHNOLOGY, 2000, 29(8): 621-635. [29] 杜鹃,庄伟川,李曼尼. 非水溶剂回滴法测定低镍甲烷化催化剂的表面酸性 [J]. 内蒙古石油化工, 2003, 29(3). DU J, ZHUANG W C, LI M N. Determination of Surface Acidity of Low Nickel Methanation Catalyst by Nonaqueous Solvent Back Drop Method [J]. Inner Mongolia Petrochemical Industry, 2003, 29(3). [30] 复旦大学化学系催化组. 非水溶剂回滴法测定固体催化剂的表面酸度 [J]. 石油化工, 1975, 4(4): 5. Department of Chemistry, Fudan University. Determination of Surface Acidity of Solid Catalyst by Non-aqueous Solvent Back Drop Method [J]. PETROCHEMICAL TECHNOLOGY, 1975, 4(4): 5. [31] 甘攀学,张涛,唐盛伟. 酸性离子液体功能化MCM-36分子筛用于催化合成乙酸乙酯 [J]. 石油化工, 2016, 45(10): 8. GAN P X, ZHANG T, TANG S W. Synthesis of Ethyl Acetate Catalyzed by MCM-36 Molecular Sieve Functionalized with Acidic Ionic Liquids [J]. PETROCHEMICAL TECHNOLOGY, 2016, 45(10): 8. [32] 江苏省化工设计研究所第三研究室分析组. 固体催化剂表面酸度测定方法的改进 [J]. 江苏化工, 1977, (1): 48-51. The Third Research Group in Institute of Chemical Engineering Research, Jiangsu. Improvement of Determination Method of Surface Acidity of Solid Catalyst [J]. JIANGSU CHEMICAL INDUSTRY, 1977, (1): 48-51. [33] 赵璧英,康志军,李超. 由溶液中正丁胺的吸附等温线测定固体表面酸度 [J]. 催化学报, 1985, 6(1): 65-70. Zhao B Y; Kang Z J; Li C. Mesurement of the Surface Acidity on Solids Based on the Adsorption Isotherms of n-butylamine in Solution [J]. Chinese Joournal of Catalysis, 1985, 6(1): 65-70. [34] 付强. ZSM-5分子筛总酸量与酸强度对甲醇催化转化制二甲醚的影响.第十五届全国分子筛学术大会, 中国河南洛阳, 2009; 747-748. FU Q. ZSM-5 Molecular Sieve Effect of Total Acidity and Acid Strength of Methanol on Catalytic Conversion of Methyl ether. The Fifteenth National Symposium on Molecular Sieves,Luoyang, Henan, 20099;747-748 [35] 巴晓微,柳翱,刘颖, 等. NH3-TPD法表征固体催化剂的酸性 [J]. 长春工业大学学报(自然科学版), 2013, 34(3): 261-263. Ba X W; Liu X; Liu Y, et al. Characterization of the Surface Acidity of Solid Catalysys with Ammonia Temperature-programmed Desorption [J]. Journal of Changchun University of Technology, 2013, 34(3): 261-263. [36] Niwa M,Katada N. New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: a review [J]. Chemical record, 2013, 13(5): 432-455. [37] 李时平,邢金仙. 脉冲色谱法测定固体催化剂表面的酸量 [J]. 中国石油大学学报(自然科学版), 2005, 29(4): 121-123. Li S P; Xing J X. Determination of Surface Acid Amount of Solid Catalyst by Pulse Chromatography Method [J]. Journal of the University of Petroleum, China, 2005, 29(4): 121-123. [38] 马秀莲,饶国瑛,徐金垒, 等. 色谱法和红外光谱法测定氧化铝的表面酸性 [J]. 石油化工, 1984, 13: 6. MA X L, RAO G Y, XU J L, et al. Determination of Surface Acidity of Alumina by Chromatography and Infrared Spectrometry [J]. PETROCHEMICAL TECHNOLOGY, 1984, 13: 6. [39] 张信伟. 离子液体在2-乙基蒽醌合成中的应用.湘潭大学, 2008. ZHANG X W. Application of Ionic Liquids in the Synthesis of 2- Ethyl Anthraquinone. Xiangtan University, 2008. [40] 朱淳礼,赵九生. 回滴法测定固体催化剂表面酸量 [J]. 化学工业与工程, 1985, 2(4): 25-29. Zhu C. L.; Zhao J. S. Determination of Surface Acidity of Solid Catalyst with Back Dropping Method [J]. GONGYE FENXI, 1985, 2(4): 25-29. [41] 张艳丽,张艳玲,衣学飞, 等. 程序升温脱附法测定固体酸催化剂的酸性 [J]. 分析实验室, 2007, 2650-51. Zhang Y L; Zhang Y L.; Yi X F, et al. Determination of Acidity of Solid Acid Catalyst by Temperature Programmed Desorption [J]. Chinese Journal of Analysis Laboratory, 2007, 2650-51. [42] 朱玉霞,林伟,田辉平, 等. 固体酸催化剂酸性分析方法的研究进展 [J]. 石油化工, 2006, 35(7): 607-614. Zhu Y X; Lin W; Tian H P, et al. Advances in Acidity Characterization of Solid Acid Catalysts [J]. PETROCHEMICAL TECHNOLOGY, 2006, 35(7): 607-614. [43] 王公慰,尹桂林,曹锡梅, 等. 程序升温脱附研究沸石的表面酸性-Y型沸石上吡啶的程序升温脱附峰谱 [J]. 催化学报, 1981, 2(2): 121-127. Wang G W; Yin G L; Cao X M, et al. Study of the Surface Acidity of Zeolite by Temperature Programmed Desorption (TPD) [J]. Chinese Journal of Catalysis, 1981, 2(2): 121-127. [44] 王公慰,尹桂林,曹锡梅, 等. 程序升温脱附研究沸石的表面酸性在不同离子交换度的Y型沸石上正丁胺的程序升温脱附峰谱 [J]. 催化学报, 1981, 2(2): 128-136. Wang G W; Yin G L; Cao X M, et al. Study of the Surface Acidity of Zeolite by Temperature Programmed Desorption (TPD) [J]. Chinese Journal of Catalysis, 1981, 2(2): 128-136. [45] 任杰,黄国文,万庆梅, 等. 烷基化催化剂TPD酸性表征及催化性能的动力学 [J]. 化工学报, 2005, 56(11): 2108-2113. Ren J; Huang G W; Wan Q M, et al. Kinetics of TPD Acidity Characterization and Catalytic Performance of Alkylation Catalyst [J]. Journal of Chemical Industry and Engineering (China), 2005, 56(11): 2108-2113. [46] 任杰,王胜利,陆文娟. 固体酸催化剂程序升温脱附动力学模拟 [J]. 高等化学工程学报, 2004, 18(6): 713-718. Ren J; Wang S L; Chen W J. Kinetic Simulation for Temperature Programmed Desorption of Solid Acid Catalyst [J]. Journal of Chemical Engineering of Chinese Universities, 2004, 18(6): 713-718. [47] Hammett L P,Deyrup A J. A series of simple basic indicators. I. The acidity functions of mixtures of sulfuric and perchloric acids with [J]. Journal of the American Chemical Society, 1932, 54(7): 2721-2739. [48] 周瑜,邓耿,郑燕珍, 等. 离子液体酸性强度探针 [J]. 科学通报, 2015, 60(26): 2476-2481. Zhou Y; Deng G; Zheng Y Z, et al. The Probes of Acidic Strength in Ionic Liquids [J]. Chinese Science Bulletin, 2015, 60(26): 2476-2481. [49] Himmel D,Goll S K,Scholz F, et al. Absolute Bronsted Acidities and pH Scales in Ionic Liquids [J]. Chemphyschem : a European journal of chemical physics and physical chemistry, 2015, 16(7): 1428-1439. [50] Kraft A,Possart J,Scherer H, et al. The Al(ORF)3/H2O/Phosphane [RF=C(CF3)3] System - Protonation of Phosphanes and Absolute Br?nsted Acidity [J]. European Journal of Inorganic Chemistry, 2013, 2013(17): 3054-3062. [51] Thomazeau C,Helene O B,Magna L, et al. Determination of an acidic scale in room temperature ionic liquids [J]. Journal of the American Chemical Society, 2003, 125: 5264-5265. [52] Ali A,Ali M,Malik N A, et al. Solvatochromic Absorbance Probe Behavior within Mixtures of the Ionic Liquid 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide + Molecular Organic Solvents [J]. Journal of Chemical & Engineering Data, 2014, 59(6): 1755-1765. [53] Gu Y L,Zhang J,Duan Z Y, et al. Pechmann Reaction in Non-Chloroaluminate Acidic Ionic Liquids under Solvent-Free Conditions [J]. Advanced Synthesis & Catalysis, 2005, 347(4): 512-516. [54] Z Wang,G Ji P,X Li, et al. Double-line Hammett relationship revealed through precise acidity measurement of benzenethiols in neat ionic media: a typical "ionic liquid effect"? [J]. Organic letters, 2014, 16(21): 5744-5747. [55] 王福余,刘艳丽,王崇, 等. 酸性离子液体中果糖脱水制备5_羟甲基糠醛 [J]. 应用化学, 2014, 31(4): 424-430. Wang F Y; Liu Y L; Wang C, et al. Dehydration of Fructose in Presence of Acidic Ionic Liquids to Prepare 5-Hydroxymethylfural [J]. CHINESE JOURNAL OF APPLIED CHEMISTRY, 2014, 31(4): 424-430. [56] 王睿,罗辉,范维玉, 等. 阳离子结构对磺酸基离子液体酸强度的影响规律 [J]. 石油学报(石油加工), 2015, 31(5): 1149-1155. Wang R; Luo H; Fan W Y, et al. Influence Rule of Cationic Structure on Acid Strength of Sulfonic Ionic Liquids [J]. ACTA PETROLEI SINICA, 2015, 31(5): 1149-1155. [57] 张建策. Bronsted酸-离子液体体系中酸强度的UV-Vis测定 [J]. 化工技术与开发, 2010, 39(3): 34-35. Zhang J C. Determination of Acid Intensity of Bronsted Acidic Ionic Liquid by UV-Vis [J]. Technology & Development of Chemical Industry, 2010, 39(3): 34-35. [58] Farcasiu D,Ghenciu A,Miller G. Evaluation of acidity of strong acid catalysts I. Derivation of an acidity function from carbon-13 NMR measurements [J]. Journal of Catalysis, 1992, 134: 118-125. [59] Farcasiu D,Ghenciu A. Determination of acidity functions and acid strengths by 13C NMR [J]. Journal of Progress in Nuclear Magnetic Spectroscopy, 1996, 29: 129-168. [60] Farcasiu D,Li J Q. Acidity Mesurements on a Heteropolyacid Hydrate in Acetic Acid Solution A Case of Three Hydrons Ionizing Independently, Rather Than Consecutively [J]. Journal of Catalysis, 1995, 152: 198-203. [61] 任海玲. 酸催化异丁烷-丁烯烷基化反应的研究. 南京工业大学, 南京, 2012. [62] Grasvik J,Hallett J P,To T Q, et al. A quick, simple, robust method to measure the acidity of ionic liquids [J]. Chemical communications, 2014, 50(55): 7258-61. [63] Estager J,Oliferenko A ,Seddon K R, et al. Chlorometallate(III) ionic liquids as Lewis acidic catalysts--a quantitative study of acceptor properties [J]. Dalton transactions, 2010, 39(47): 11375-11382. [64] Schmeisser M,Illner P,Puchta R, et al. Gutmann donor and acceptor numbers for ionic liquids [J]. Chemistry, 2012, 18(35): 10969-10982. [65] Mantz R A,Trulove P C,Carlin R T, et al. Gutmann Acceptor Properties of LiCl, NaCl, and KCl Buffered Ambient-Temperature [J]. 1997, 36: 1227-1232. [66] Zawodzinski T A,Osteryoung R A. Donor-Acceptor Properties of Ambient-Temperature Chloroaluminate Melts [J]. Inorganic Chenistry, 1989, 28: 1710-1715. [67] Matuszek K,Chrobok A,Coleman F, et al. Tailoring ionic liquid catalysts: structure, acidity and catalytic activity of protonic ionic liquids based on anionic clusters, [(HSO4)(H2SO4)x]? (x = 0, 1, or 2) [J]. Green Chemistry, 2014, 16(7): 3463-3469. [68] Kimura Y,Fukuda M,Fujisawa T, et al. Acceptor Number of Room Temperature Ionic Liquid Determined by the Raman Spectrum of Diphenylcyclopropenone [J]. Chemistry Letters, 2005, 34(3): 338-339. [69] Li S H,Zheng A M,Su Y C, et al. Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations [J]. Physical Chemistry Chemical Physics, 2010, 12(15): 3895-3903. [70] Zheng A M,Huang S J,Liu S B, et al. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules [J]. Physical chemistry chemical physics, 2011, 13(33): 14889-14901. [71] Zheng A M,Huang S J,Liu S B, et al. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules [J]. Physical Chemistry Chemical Physics, 2011, 13(33): 14889-14901. [72] Zheng A M,Liu S B,Deng F. Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules [J]. Solid state nuclear magnetic resonance, 2013, 55-56: 12-27. [73] Zheng A M,Li S H,Liu S B, et al. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy [J]. Accounts of chemical research, 2016, 49(4): 655-63. [74] Wang Z,Jiang Y,Lafon O, et al. Bronsted acid sites based on penta-coordinated aluminum species [J]. Nature communications, 2016, 7: 13820. [75] Zheng A M,Huang S J,Wang Q, et al. Progress in development and application of solid state NMR for solid acid catalysis [J]. Chinese Journal of Catalysis, 2013, 34(3): 436-491. [76] Jiang J,Yaghi O M. Bronsted acidity in metal-organic frameworks [J]. Chemical reviews, 2015, 115(14): 6966-6997. [77] Jiang J,Gandara F,Zhang Y B, et al. Superacidity in sulfated metal-organic framework-808 [J]. Journal of the American Chemistry Society, 2014, 136(37): 12844-12847. [78] Tagusagawa C,Takagaki A,Iguchi A, et al. Highly active mesoporous Nb-W oxide solid-acid catalyst [J]. Angewandte Chemie, 2010, 49(6): 1128-1132. [79] Wiper P V,Amelse J,Mafra L. Multinuclear solid-state NMR characterization of the Br?nsted/Lewis acid properties in the BP HAMS-1B (H-[B]-ZSM-5) borosilicate molecular sieve using adsorbed TMPO and TBPO probe molecules [J]. Journal of Catalysis, 2014, 316: 240-250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||